Skip to main content
Log in

Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Activity of acetyl-CoA carboxylase (ACCase) and lipid accumulation were assayed in the microalga Chlorella vulgaris co-immobilised in alginate beads with Azospirillum brasilense, under autotrophic and heterotrophic growth conditions, with and without ammonium starvation. ACCase is a key enzyme in de novo fatty acid biosynthesis. Under the two growth conditions, co-immobilisation always enhanced the activity of ACCase and yielded a higher level of lipids when compared with immobilisation of the alga alone. The highest lipid content obtained under autotrophic conditions was with ammonium starvation. Cultivation under heterotrophic conditions without limitation of nitrogen, with or without the presence of bacteria, yielded a higher growth rate and accumulated more lipids than under autotrophic conditions. No correlation was found between total lipids and ACCase activity. Unusually, ammonium starvation significantly reduced lipid accumulation under heterotrophic conditions. Consequently, co-immobilisation, sufficient ammonium and heterotrophic growth conditions were the most significant parameters for lipid accumulation and ACCase activity in C. vulgaris where the two latter parameters are not directly linked.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alban C, Baldet P, Douce R (1994) Localization and characterization of two structurally different forms of acetyl-CoA carboxylase in young pea leaves, of which one is sensitive to aryloxyphenoxypropionate herbicides. Biochem J 300:557–565

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bashan Y (1986) Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl Environ Microb 51:1089–1098

    CAS  Google Scholar 

  • Bashan Y, de-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth-a critical assessment. Adv Agron 108:77–136

    Article  CAS  Google Scholar 

  • Bashan Y, Holguin G, Lifshitz R (1993) Isolation and characterization of plant growth-promoting rhizobacteria. In: Glick B, Thompson JE (eds) Methods in plant molecular biology and biotechnology. CRC, Boca Raton, pp 331–345

    Google Scholar 

  • Bashan Y, Hernandez JP, Leyva LA, Bacilio M (2002) Alginate microbeads as inoculant carrier for plant growth-promoting bacteria. Biol Fert Soils 35:359–368

    Article  Google Scholar 

  • Bashan Y, Holguin G, de-Bashan LE (2004) Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–577

    Article  CAS  PubMed  Google Scholar 

  • Bligh GE, Dyer JW (1959) A rapid method f total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Bumbak F, Cook S, Zachleder V, Hauser S, Kovar K (2011) Best practices in heterotrophic high-cell-density microalgal processes: achievements, potential and possible limitations. Appl Microbiol Biotechnol 91:31–46

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012a) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense. I. Autotrophic conditions. Enzym Microb Technol 51:294–299

    Article  CAS  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012b) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense. II. Heterotrophic conditions. Enzyme Microb Technol 51:300–309

    Article  CAS  PubMed  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680

    Article  CAS  PubMed  Google Scholar 

  • Cruz I, Bashan Y, Hernàndez-Carmona G, de-Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y (2008) Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl Environ Microb 74:6797–6802

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technol 101:1611–1627

    Article  CAS  Google Scholar 

  • de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002a) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when coimmobilized in alginate beads with the microalgae-growth-promoting bacteria Azospirillum brasilense. Can J Microbiol 48:514–521

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Moreno M, Hernandez JP, Bashan Y (2002b) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilized in alginate beads with the microalage growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez JP, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as helpers for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2005) Cultivation factors and population size control uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 54:197–203

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Magallon P, Antoun H, Bashan Y (2008a) Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. J Phycol 44:1188–1196

    Article  CAS  Google Scholar 

  • de-Bashan LE, Trejo A, Huss VAR, Hernandez JP, Bashan Y (2008b) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalgae with potential for removing ammonium from wastewater. Bioresource Technol 99:4980–4989

    Article  CAS  Google Scholar 

  • de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y (2011) Cell-cell interaction in the eukaryote-prokaryote model using the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. J Phycol 47:1350–1359

    Article  Google Scholar 

  • Dunahay TG, Jarvis EE, Dais SS, Roessler PG (1996) Manipulation of microalgal lipid production using genetic engineering. Appl Biochem Biotechnol 57(58):223–231

    Article  Google Scholar 

  • Egli MA, Gengenbach BG, Gronwald JW, Somers DA, Wyse DL (1993) Characterization of maize acetyl-Coenzyme A carboxylase. Plant Physiol 101:499–506

    PubMed Central  CAS  PubMed  Google Scholar 

  • Francki M, Whitaker P, Smith P, Atkins C (2002) Differential expression of a novel gene during seed triacylglycerol accumulation in lupin species (Lupinus angustifolius L. and L. mutabilis L.). Funct Integr Genom 2:292–300

    Article  CAS  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Growth promotion of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microb 66:1527–31

    Article  CAS  Google Scholar 

  • Gonzalez LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technol 60:259–262

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as raw material for biofuels production. J Ind Microbiol Biot 36:269–274

    Article  CAS  Google Scholar 

  • Hayashi O, Satoh K (2006) Determination of acetyl-CoA and Malonyl-CoA in germinating rice seeds using the LC-MS/MS Technique. Biosci Biotech Biochem 70:2676–2681

    Article  CAS  Google Scholar 

  • Herbert D, Price L, Alban C, Dehaye L, Job D, Cole D, Pallet K, Hardwood J (1996) Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves. Biochem J 318:997–1006

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hernandez JP, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Tech 38:190–198

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuels production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • James ES, Cronan JE (2004) Expression of two Escherichia coli acetyl-CoA carboxylase subunits is autoregulated. J Biol Chem 279:2520–2527

    Article  CAS  PubMed  Google Scholar 

  • Khozin-Goldberg I, Cohen Z (2011) Unraveling algal lipid metabolism: recent advances in gene identification. Biochimie 93:91–100

    Article  CAS  PubMed  Google Scholar 

  • Klaus D, Ohlrogge J, Ekkerhard Neuhaus H, Dörmann P (2004) Increased fatty acid production in potato by engineering of Acetyl-CoA carboxylase. Planta 219:389–396

    Article  CAS  PubMed  Google Scholar 

  • Lebeau T, Robert JM (2006) Biotechnology of immobilized micro algae: a culture technique for the future? In: Rao S (ed) Algal cultures, analogues of blooms and applications. Science Publishers, Enfield, pp 801–837

    Google Scholar 

  • Levert KL, Waldrop GL, Stephens JM (2002) A biotin analogue inhibits acetyl CoA carboxylase activity and adipogenesis. J Biol Chem 277:16347–16350

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Harrison DK, Chalupska D, Gornicki P, O’Donnell C, Adkins S, Haselkorn R, Williams R (2007) Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc Natl Acad Sci USA 104:3627–3632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresource Technol 102:106–110

    Article  CAS  Google Scholar 

  • Livne A, Sukenik A (1992) Lipid synthesis and abundance of acetyl-CoA carboxylase in Isochrysis galbana (Prymnesiophyceae) following nitrogen starvation. Plant Cell Physiol 33:1175–1181

    CAS  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • O’Grady J, Morgan A (2011) Heterotrophic growth and lipid production of Chlorella protothecoides on glycerol. Bioprocess Eng 34:121–125

    Article  Google Scholar 

  • Oh-Hama T, Miyachi S (1992) Chlorella. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algae biotechnology. Cambridge University Press, Cambridge, pp 3–26

    Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pande SV, Parvin RK, Venkitasubramanian TA (1963) Microdetermination of lipids and serum total fatty acids. Anal Biochem 6:415–423

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, de-Bashan LE, Hernandez JP, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol 46:800–812

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199

    Article  Google Scholar 

  • Porra RJ, Thomson WA, Kriedemann PA (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentrations of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Prasad K, Kadokawa JI (2009) Alginate-based blends and nano/microbeads. Microbiol Monogr 13:175–210

    Article  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561

    Article  PubMed  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Pasewitz C (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energ 103:444–467

    Article  CAS  Google Scholar 

  • Roessler PG, Ohlrogge JB (1993) Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem 268:19254–19259

    CAS  PubMed  Google Scholar 

  • Sartory D, Grobbelaar J (1984) Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114:177–187

    Article  CAS  Google Scholar 

  • Sasaki Y, Nagano Y (2004) Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation and gene manipulation for plant breeding. Biosci Biotechnol Biochem 68:1175–1184

    Article  CAS  PubMed  Google Scholar 

  • Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukariot Cell 6:1006–1017

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler PG (1998) US Department of Energy’s Office of Fuels Development. A look back at the US Department of Energy’s aquatic species program – biodiesel from algae, close Out Report TP-580-24190. National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Sukenik A, Livne A (1991) Variations in lipid and fatty acid content in relation to acetyl CoA carboxylase in the marine Prymnesiophyte Isochrysis galbana. Plant Cell Physiol 32:371–378

    CAS  Google Scholar 

  • Tang H, Chen M, Garcia MED, Abunasser N, Simon Ng KY, Salley SO (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287

    Article  CAS  PubMed  Google Scholar 

  • Tong L, Hardwood HJ (2006) Acetyl-coenzyme A carboxylases: versatile targets for drug discovery. J Cell Biochem 99:1476–1488

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Wang R, Xia J, Rosenberg J, Nie Z, Kobayashi N, Oyler G, Betenbaugh M (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Gao CF, Yan D, Wu C, Wu QY (2010) Double CO2 fixation in photosynthesis–fermentation model enhances algal lipid synthesis for biodiesel production. Bioresource Technol 101:2287–2293

    Article  CAS  Google Scholar 

  • Yu Q, Collavo A, Zheng M, Owen M, Sattin M, Powles S (2007) Diversity of acetyl-Coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim. Plant Physiol 145:547–558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

At CIBNOR, we thank Manuel Moreno for technical support, Ira Fogel for editorial improvements, Fernando Garcia-Carreño for free use of the HPLC, and Mariana Diaz- Tenorio of Instituto Tecnologico de Sonora, Cd. Obregon, Mexico, for help in enzymatic analysis. This study was supported by the Secretaria de Medio Ambiente y Recursos Naturales, (SEMARNAT contract 23510) and Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT-Basic Science-2009, contracts 130656 and 164548). Time for writing was provided by The Bashan Foundation, USA. L.A.L. was mainly supported by a graduate fellowship (CONACYT #48487) and additional periodic grants from The Bashan Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz E. de-Bashan.

Additional information

This study is dedicated to the memory of the Italian microbiologist Prof. Franco Favilli (1933–2012) of the University of Florence, Italy, one of the pioneers of Azospirillum studies

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 38 kb)

ESM 2

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leyva, L.A., Bashan, Y. & de-Bashan, L.E. Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann Microbiol 65, 339–349 (2015). https://doi.org/10.1007/s13213-014-0866-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0866-3

Keywords

Navigation