Skip to main content
Log in

Effects of fungal endophytes on grass and non-grass litter decomposition rates

  • Review
  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The influence of clavicipitaceous fungal endophytes on grass decomposition rates has been studied through field and laboratory experiments. However, the effects of endophytes on decomposition rates of non-grass species are unclear. This paper reviews research data related to the effects of fungal endophytes on decomposition rates of three litter types: grass, non-grass leaf litter (including spruce needle litter) and non-grass twigs and wood. We discuss how fungal endophytes are involved in, or regulate decomposition rates and may change lifestyles from fungal endophytes to saprotrophs. Classical morphology and molecular approaches together with digestion enzyme studies provide evidence to suggest that some endophyte species switch their ecological roles and adopt a new life style as saprotrophs. We also explore the main mechanisms that explain how fungal endophytes may decelerate decomposition rates and whether it is directly driven by alkaloids. Further research on the role of fungal endophytes in decomposition rates of both grass and non-grass litter is needed, especially those addressing the direct and indirect mechanisms by which endophytes affect decomposition rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41(1):1–16

    Article  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Bacon CW, Hill NS (1996) Symptomless grass endophytes: products of coevolutionary symbioses and their role in the ecological adaptations of grasses. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants: systematics, ecology, and evolution. APS Press, The American Phytopathological Society, St. Paul, pp 155–178

    Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter, decomposition, humus formation, carbon sequestration, 2nd edn. Springer-Verlag, Heidelberg

    Google Scholar 

  • Campanile G, Ruscelli A, Luisi N (2007) Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol 117:237–246

    Article  Google Scholar 

  • Cao R, Liu XG, Gao KX, Kang MK, ZS GJF, Dai Y, Wang X (2009) Mycoparasitism of endophytic fungi isolated from reed on soilborne phytopathogenic fungi and production of cell wall-degrading enzymes in vitro. Curr Microbiol 59:584–592

    Article  PubMed  CAS  Google Scholar 

  • Chapela IH, Boddy L (1988a) Fungal colonization of attached beech branches I. Early stages of development of fungal communities. New Phytol 110:39–45

    Article  Google Scholar 

  • Chapela IH, Boddy L (1988b) Fungal colonization of attached beech branches II. Spatial and temporal organization of communities arising from latent invaders in bark and functional sapwood, under different moisture regimes. New Phytol 110:47–57

    Article  Google Scholar 

  • Chapela IH, Boddy L, Rayner ADM (1988) Structure and development of fungal communities in beech logs four and a half years after felling. FEMS Microbiol Ecol 53:59–70

    Article  Google Scholar 

  • Clay K (1987) Effects of fungal endophytes on the seed and seedling biology of Lolium perenne and Festuca arundinacea. Oecologia (Berlin) 73:358–362

    Article  Google Scholar 

  • Clay K (1990) Fungal endophytes of grasses. Ann Rev Ecolog Syst 21:275–297

    Article  Google Scholar 

  • Clay K, Holah J (1999) Fungal endophyte symbiosis and plant diversity in successional fields. Science 285:1742–1744

    Article  PubMed  CAS  Google Scholar 

  • Clay K, Marks S, Cheplick GP (1993) Effects of insect herbivory and fungal endophyte infection on competitive interactions among grasses. Ecology 74:1767–1777

    Article  Google Scholar 

  • Coates D, Rayner ADM (1985) Fungal population and community development in cut beech logs III. Spatial dynamics, interaction and strategies. New Phytol 101:183–198

    Article  Google Scholar 

  • Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  Google Scholar 

  • Dowson CG, Rayner ADM, Boddy L (1988a) Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter I. Initial establishment. New Phytol 109:335–341

    Article  Google Scholar 

  • Dowson CG, Rayner ADM, Boddy L (1988b) Inoculation of mycelial cord-forming basidiomycetes into woodland soil and litter II. Resource capture and persistence. New Phytol 109:343–349

    Article  Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67

    Article  Google Scholar 

  • Fukasawa Y, Osono T, Takeda H (2005) Decomposition of Japanese beech wood by diverse fungi isolated from a cool temperate deciduous forest. Mycoscience 46:97–101

    Article  Google Scholar 

  • Fukasawa Y, Osono T, Takeda H (2009) Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol Res 24:1067–1073

    Article  Google Scholar 

  • Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  • Giordano L, Gonthier P, Varese GC, Miserere L, Nicolotti G (2009) Mycobiota inhabiting sapwood of healthy and declining Scots pine (Pinus sylvestris L.) trees in the Alps. Fungal Divers 38:69–83

    Google Scholar 

  • Griffith GS, Boddy L (1990) Fungal decomposition of attached angiosperm twigs I. Decay community development in ash, beech and oak. New Phytol 116:407–415

    Article  Google Scholar 

  • Griffith GS, Boddy L (1991a) Fungal decomposition of attached angiosperm twigs II. Moisture relations of twigs of ash (Fraxinus excelsior L.). New Phytol 117:251–257

    Article  Google Scholar 

  • Griffith GS, Boddy L (1991b) Fungal decomposition of attached angiosperm twigs III. Effect of water potential and temperature on fungal growth, survival and decay of wood. New Phytol 117:259–269

    Article  Google Scholar 

  • Griffith GS, Boddy L (1991c) Fungal decomposition of attached angiosperm twigs IV. Effect of water potential on interactions between fungi on agar and in wood. New Phytol 117:633–641

    Article  Google Scholar 

  • Grime JP, Cornelissen JHC, Thompson K, Hodgson JG (1996) Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos 77:489–494

    Article  Google Scholar 

  • Hector A, Beale AJ, Minns A, Otway SJ, Lawton JH (2000) Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90:357–371

    Article  Google Scholar 

  • Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van BS (2007) Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology 88:550–558

    Article  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M (2008) Biodiversity of endophytic fungi associated with 29 traditional Chinese medicinal plants. Fungal Divers 33:61–75

    Google Scholar 

  • Hudson HJ (1968) The ecology of fungi on plant remains above the soil. New Phytol 67:837–874

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jenkins MB, Franzluebbers AJ, Humayoun SB (2006) Assessing short-term responses of prokaryotic communities in bulk and rhizosphere soils to tall fescue endophyte infection. Plant Soil 289:309–320

    Article  CAS  Google Scholar 

  • Kaewchai S, Soytong K, Hyde KD (2009) Mycofungicides and fungal biofertilizers. Fungal Divers 38:25–50

    Google Scholar 

  • Kharkwal AC, Kharkwal H, Sherameti I, Oelmuller R, Varma A (2008) Novel symbiotrophic endophytes. In: Mycorrhiza. Springer, Berlin Heidelberg, pp 753–766

  • Knops JMH, Wedin D, Tilman D (2001) Biodiversity and decomposition in experimental grassland ecosystems. Oecologia 126:429–433

    Article  Google Scholar 

  • Koide K, Osono T, Takeda H (2005a) Colonization and lignin decomposition of Camellia japonica leaf litter by endophytic fungi. Mycoscience 46:280–286

    Article  Google Scholar 

  • Koide K, Osono T, Takeda H (2005b) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Article  Google Scholar 

  • Korkama-Rajala T, Müller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing Norway Spruce (Picea abies) Clones. Microb Ecol 56:76–89

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657

    Article  PubMed  Google Scholar 

  • Lehtonen P, Saikkonen K, Helander M (2003) Fungal endophytes decrease aphid performance in grasses: effects on virus transmission? Proceedings of the NJF’s 22nd Congress “Nordic Agriculture in Global Perspective”, Turku, Finland

  • Lemons A, Clay K, Rudgers JA (2005) Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia 145:595–604

    Article  PubMed  Google Scholar 

  • Lyons PC, Evans JJ, Bacon CW (1990) Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue. Plant Physiol (Rockville) 92:726–732

    Article  CAS  Google Scholar 

  • Madritch MD, Hunter MD (2003) Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration. Oecologia 136:124–128

    Article  PubMed  Google Scholar 

  • Malinowski DP, Alloush GA, Belesky DP (2000) Leaf endophyte Neotyphodium coenophialum modifies mineral uptake in tall fescue. Plant Soil 227:115–126

    Article  CAS  Google Scholar 

  • Martius C, Höfer H, Garcia MVB, Römbke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154

    Article  CAS  Google Scholar 

  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D (2008) Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers 31:37–43

    Google Scholar 

  • Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2009) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156:270–277

    Article  PubMed  Google Scholar 

  • Omacini M, Chaneton EJ, Ghersa CM, Otero P (2004) Do foliar endophytes affect grass litter decomposition? A microcosm approach using Lolium multiflorum. Oikos 104:581–590

    Article  Google Scholar 

  • Osono T (2006) Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. Can J Microbiol 52:701–716

    Article  PubMed  CAS  Google Scholar 

  • Osono T, Takeda H (1999) Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol 35:51–56

    Article  Google Scholar 

  • Osono T, Takeda H (2002) Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan. Mycologia 94:421–427

    Article  PubMed  CAS  Google Scholar 

  • Osono T, Bhatta BK, Takeda H (2004) Phyllosphere fungi on living and decomposing leaves of Giant dogwood. Mycoscience 45:35–41

    Article  Google Scholar 

  • Osono T, Ishii Y, Hirose D (2008) Fungal colonization and decomposition of Castanopsis sieboldii leaves in a subtropical forest. Ecol Res 23:909–917

    Article  Google Scholar 

  • Osono T, Ishii Y, Takeda H, Seramethakun T, Khamyong S, To-Anun C, Hirose D, Tokumasu S, Kakishima M (2009) Fungal succession and lignin decomposition on Shorea obtusa leaves in a tropical seasonal forest in northern Thailand. Fungal Divers 36:101–119

    Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrewsand JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 179–197

    Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41(1):89–99

    Article  Google Scholar 

  • Read JC, Walker DW (1990) The effect of the fungal endophyte Acremonium coenophialum on dry matter production and summer survival of tall fescue. In: Quisenberry SS, Joost RE (eds) Proceedings of the international symposium on Acremonium/grass interactions. Louisiana Agricultural Experiment Station, Baton Rouge, pp 181–184

    Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182(2):314–330

    Article  PubMed  CAS  Google Scholar 

  • Rudgers JA, Clay K (2007) Endophyte symbiosis with tall fescue: how strong are the impacts on communities and ecosystems? Fungal Biol Rev 21:107–124

    Article  Google Scholar 

  • Rungjindamai N, Pinruan U, Choeyklin R, Hattori T, Jones EBG (2008) Molecular characterization of basidiomycetous endophytes isolated from leaves, rachis and petioles of the oil palm, Elaeis guineensis, in Thailand. Fungal Divers 33:139–162

    Google Scholar 

  • Schmidt SP, Carl SH, Edward MC, Norman DD, Smith LA, Harold WG, Jimmy LH (1982) Association of an endophytic fungus with fescue toxicity in steers fed Kentucky-31 tall fescue seed or hay. J Anim Sci 55:1259–1263

    PubMed  CAS  Google Scholar 

  • Schulz B, Rommert AK, Dammann U, Aust HJ, Strack D (1999) The endophyte-host interaction: a balanced antagonism? Mycol Res 10:1275–1283

    Article  Google Scholar 

  • Siegrist JA, McCulley RL, Bush LP, Phillips TD (2010) Alkaloids may not be responsible for endophyte associated reductions in tall fescue decomposition rates. Funct Ecol 24(2):460–468

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U, Harper J (2003) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  Google Scholar 

  • Sutherland BL, Hume DE, Tapper BA (1999) Allelopathic effects of endophyte- infected perennial ryegrass extracts on white clover seedlings. NZ J Agric Res 42:19–26

    Article  Google Scholar 

  • Tao G, Liu ZY, Hyde KD, Lui XZ, Yu ZN (2008) Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Divers 33:101–122

    Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Worrall JJ, Anagnost SE, Zabel RA (1997) Comparison of wood decay among diverse lignicolous fungi. Mycologia 89:199–219

    Article  Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers. doi:10.1007/s13225-010-0055-z

    Google Scholar 

  • Zhigiang A (2005) Handbook of industrial mycology. Marcel Dekker, New York, 141 pp

    Google Scholar 

  • Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Liu J, Zhang D, Yan J (2008) Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant Soil 311:61–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. La-aw Ampornpan for valuable discussions and Dong Yong Hui for providing some useful materials. This study was supported by Erasmus Mundus Scholarship (IMaHS) of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witoon Purahong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purahong, W., Hyde, K.D. Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Diversity 47, 1–7 (2011). https://doi.org/10.1007/s13225-010-0083-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0083-8

Keywords

Navigation