Skip to main content
Log in

Community composition of endophytic fungi in Acer truncatum and their role in decomposition

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The mycota and decomposing potential of endophytic fungi associated with Acer truncatum, a common tree in northern China, were investigated. The colonization rate of endophytic fungi was significantly higher in twigs (77%) than in leaves (11%). However, there was no significant difference in the colonization rates of endophytic fungi between lamina (9%) and midrib (14%) tissues. A total of 58 endophytic taxa were recovered using two isolation methods and these were identified based on morphology and ITS sequence data. High numbers of leaf endophytes were obtained in the method to determine decomposition of leaves by the natural endophyte community (35 taxa) as compared to disk fragment methodology (9 taxa). The weight loss in A. truncatum leaves decomposed by endophyte communities increased with incubation time; the weight loss was significantly higher at 20 weeks than at 3 and 8 weeks. Both common and rare endophytic taxa produced extracellular enzymes in vitro and showed different leaf decay abilities. Our results indicated that the composition and diversity of endophytic fungi obtained differed using two isolation methods. This study suggests that endophytic fungi play an important role in recycling of nutrients in natural ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albrectsen BR, Bjorken L, Varad A, Hagner A, Wedin M, Karlsson J, Jansson S (2010) Endophytic fungi in European aspen (Populus tremula) leaves diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28. doi:10.1007/s13225-009-0011-y

    Article  Google Scholar 

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. doi:10.1007/s13225-010-0034-4

    Article  Google Scholar 

  • Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. doi:10.1890/05-1459

    Article  PubMed  Google Scholar 

  • Barrow JR, Osuna-Avila P, Reyes-Vera I (2004) Fungal endophytes intrinsically associated with micropropagated plants regenerated from native Bouteloua eriopoda Torr. and Atriplex canescens (Pursh) Nutt. In Vitro Cell Dev Biol—Plant 40:608–612. doi:10.1079/Ivp2004584

    Article  Google Scholar 

  • Bills GF (1996) Isolation and analysis of endophytic fungal communities from woody plants. In: Redlin SC, Carris LM (eds) Endophytic fungi in grasses and woody plants. The American Phytopathological Society Press, St. Paul, pp 31–66

    Google Scholar 

  • Carroll G, Petrini O (1983) Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia 75:53–63

    Article  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitaion in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111:89–97. doi:10.1111/j.1469-8137.1989.tb04222.x

    Article  Google Scholar 

  • Collado J, Platas G, Pelaez F (2000) Host specificity in fungal endophytic populations of Quercus ilex and Quercus faginea from Central Spain. Nova Hedwig 71:421–430

    Google Scholar 

  • Davey ML, Currah RS (2006) Interactions between mosses (Bryophyta) and fungi. Can J Bot 84:1509–1519. doi:10.1139/B06-120

    Article  Google Scholar 

  • Duong LM, Jeewon R, Lumyong S, Hyde KD (2006) DGGE coupled with ribosomal DNA gene phylogenies reveal uncharacterized fungal phylotypes. Fungal Divers 23:121–138

    Google Scholar 

  • Elmi AA, West CP (1995) Endophyte infection effects on stomatal conductance, osmotic adjustment and drought recovery of tall fescue. New Phytol 131:61–67. doi:10.1111/j.1469-8137.1995.tb03055.x

    Article  Google Scholar 

  • Fisher PJ, Petrini O (1987) Location of fungal endophytes in tissues of Suaeda fruticosa: a preliminary study. Trans Br Mycol Soc 89:246–249. doi:10.1016/S0007-1536(87)80161-4

    Article  Google Scholar 

  • Fisher PJ, Anson AE, Petrini O (1986) Fungal endophytes in Ulex europaeus and Ulex gallii. Trans Br Mycol Soc 86:153–156. doi:10.1016/S0007-1536(86)80128-0

    Article  Google Scholar 

  • Fisher PJ, Petrini O, Petrini LE, Sutton BC (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 127:133–137. doi:10.1111/j.1469-8137.1994.tb04267.x

    Article  Google Scholar 

  • Gamboa MA, Laureano S, Bayman P (2003) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45. doi:10.1023/A:1021362217723

    Article  Google Scholar 

  • Gond SK, Verma VC, Kumar A, Kumar V, Kharwar RN (2007) Study of endophytic fungal community from different parts of Aegle marmelos Correae (Rutaceae) from Varanasi (India). World J Microbiol Biotechnol 23:1371–1375. doi:10.1007/s11274-007-9375-x

    Article  Google Scholar 

  • Gong LJ, Guo SX (2009) Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr J Biotechnol 8:731–736

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (1998) A method to promote sporulation in palm endophytic fungi. Fungal Divers 1:109–113

    Google Scholar 

  • Guo LD, Hyde KD, Liew ECY (2000) Identification of endophytic fungi from Livistona chinensis based on morphology and rDNA sequences. New Phytol 147:617–630. doi:10.1046/j.1469-8137.2000.00716.x

    Article  CAS  Google Scholar 

  • Guo LD, Huang GR, Wang Y (2008) Seasonal and tissue age influences on endophytic fungi of Pinus tabulaeformis (Pinaceae) in the Dongling Mountains, Beijing. J Integr Plant Biol 50:997–1003. doi:10.1111/j.1744-7909.2008.00394x

    Article  PubMed  Google Scholar 

  • Huang WY, Cai YZ, Surveswaran S, Hyde KD, Corke H, Sun M (2009) Molecular phylogenetic identification of endophytic fungi isolated from three Artemisia species. Fungal Divers 36:69–88

    CAS  Google Scholar 

  • Hyde KD, Soytong K (2007) Understanding microfungal diversity: a critique. Cryptogam Mycol 28:281–289

    Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 33:163–173

    Google Scholar 

  • Jakucs E, Naar Z, Szedlay G, Orban S (2003) Glomalean and septate endophytic fungi in Hypopterygium mosses (Bryopsida). Cryptogam Mycol 24:27–37

    Google Scholar 

  • Korkama-Rajala T, Müeller MM, Pennanen T (2008) Decomposition and fungi of needle litter from slow- and fast-growing norway spruce (Picea abies) clones. Microb Ecol 56:76–89. doi:10.1007/s00248-007-9326-y

    Article  PubMed  Google Scholar 

  • Krings M, Taylor TN, Hass H, Kerp H, Dotzler N, Hermsen EJ (2007) Fungal endophytes in a 400-million-yr-old land plant: infection pathways, spatial distribution, and host responses. New Phytol 174:648–657. doi:10.1111/j.1469-8137.2007.02008.x

    Article  PubMed  Google Scholar 

  • Kumar DSS, Hyde KD (2004) Biodiversity and tissue-recurrence of endophytic fungi in Tripterygium wilfordii. Fungal Divers 17:69–90

    CAS  Google Scholar 

  • Kumaresan V, Suryanarayanan TS (2002) Endophyte assemblages in young, mature and senescent leaves of Rhizophora apiculata: evidence for the role of endophytes in mangrove litter degradation. Fungal Divers 9:81–91

    Google Scholar 

  • Lacap DC, Hyde KD, Liew ECY (2003) An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Divers 12:53–66

    Google Scholar 

  • Li WC, Zhou J, Guo SY, Guo LD (2007) Endophytic fungi associated with lichens in Baihua mountain of Beijing, China. Fungal Divers 25:69–80

    Google Scholar 

  • Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60. doi:10.1046/j.1439-037x.1999.00321.x

    Article  CAS  Google Scholar 

  • Mohamed R, Jong PL, Zali MS (2010) Fungal diversity in wounded stems of Aquilaria malaccensis. Fungal Divers 43:67–74. doi:10.1007/s13225-010-0039-z

    Article  Google Scholar 

  • Mucciarelli M, Scannerini S, Bertea C, Maffei M (2003) In vitro and in vivo peppermint (Mentha piperita) growth promotion by nonmycorrhizal fungal colonization. New Phytol 158:579–591. doi:10.1046/j.1469-8137.2003.00762.x

    Article  Google Scholar 

  • Muller CB, Krauss J (2005) Symbiosis between grasses and asexual fungal endophytes. Curr Opin Plant Biol 8:450–456. doi:10.1016/j.pbi.2005.05.007

    Article  PubMed  Google Scholar 

  • Müller MM, Valjakka R, Suokko A, Hantula J (2001) Diversity of endophytic fungi of single Norway spruce needles and their role as pioneer decomposers. Mol Ecol 10:1801–1810. doi:10.1046/j.1365-294X.2001.01304.x

    Article  PubMed  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microb 71:5544–5550. doi:10.1128/AEM.71.9.5544-5550.2005

    Article  Google Scholar 

  • Olsrud M, Michelsen A, Wallander H (2007) Ergosterol content in ericaceous hair roots correlates with dark septate endophytes but not with ericold mycorrhizal colonization. Soil Biol Biochem 39:1218–1221. doi:10.1016/j.soilbio.2006.11.018

    Article  CAS  Google Scholar 

  • Osono T, Hirose D (2009) Effects of prior decomposition of Camellia japonica leaf litter by an endophytic fungus on the subsequent decomposition by fungal colonizers. Mycoscience 50(1):52–55. doi:10.1007/s10267-008-0442-4

    Article  Google Scholar 

  • Osono T, Takeda H (2006) Fungal decompostion of Abies needle and Betula leaf litter. Mycologia 98:172–179. doi:10.3852/mycologia.98.2.172

    Article  PubMed  CAS  Google Scholar 

  • Pinruan U, Rungjindamai N, Choeyklin R, Lumyong S, Hyde KD, Jones EBG (2010) Occurrence and diversity of basidiomycetous endophytes from the oil palm, Elaeis guineensis in Thailand. Fungal Divers 41:71–88. doi:10.1007/s13225-010-0029-1

    Article  Google Scholar 

  • Pinto LSRC, Azevedo JL, Pereira JO, Vieira MLC, Labate CA (2000) Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol 147:609–615. doi:10.1046/j.1469-8137.2000.00722.x

    Article  CAS  Google Scholar 

  • Promputtha I, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2002) Fungal succession on senescent leaves of Manglietia garrettii in Doi Suthep-Pui National Park, northern Thailand. Fungal Divers 10:89–100

    Google Scholar 

  • Promputtha I, Jeewon R, Lumyong S, McKenzie EHC, Hyde KD (2005) Ribosomal DNA fingerprinting in the identification of non sporulating endophytes from Magnolia liliifera (Magnoliaceae). Fungal Divers 20:167–186

    Google Scholar 

  • Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EHC, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590. doi:10.1007/s00248-006-9117-x

    Article  PubMed  Google Scholar 

  • Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99. doi:10.1007/s13225-010-0024-6

    Article  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Saikkonen K, Saari S, Helander M (2010) Defensive mutualism between plants and endophytic fungi? Fungal Divers 41:101–113. doi:10.1007/s13225-010-0023-7

    Article  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45. doi:10.1007/s13225-009-0013-9

    Article  Google Scholar 

  • Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686. doi:10.1017/S095375620500273X

    Article  PubMed  Google Scholar 

  • Selosse MA, Vohnik M, Chauvet E (2008) Out of the rivers: are some aquatic hyphomycetes plant endophytes? New Phytol 178:3–7. doi:10.1111/j.1469-8137.2008.02390.x

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry. W. H. Freeman and Company, San Francisco

    Google Scholar 

  • Sokolski S, Piché Y, Chauvet É, Bérubé JA (2006) A fungal endophyte of black spruce (Picea mariana) needles is also an aquatic hyphomycete. Mol Ecol 15:1955–1962. doi:10.1111/j.1365-294X.2006.02909.x

    Article  PubMed  CAS  Google Scholar 

  • Su YY, Guo LD, Hyde KD (2010) Response of endophytic fungi of Stipa grandis to experimental plant function group removal in Inner Mongolia steppe, China. Fungal Divers 43:93–101. doi:10.1007/s13225-010-0040-6

    Article  Google Scholar 

  • Sun J, Guo L, Zang W, Ping W, Chi D (2008) Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Sci China C Life Sci 51:751–759. doi:10.1007/s11427-008-0091-z

    Article  PubMed  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN, Balaji P (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:120–130

    Google Scholar 

  • Swatzell LJ, Powell MJ, Kiss JZ (1996) The relationship of endophytic fungi to the gametophyte of the fern Schizaea pusilla. Int J Plant Sci 157:53–62

    Article  PubMed  CAS  Google Scholar 

  • Ting ASY, Meon S, Kadir J, Radu S, Singh G (2008) Endophytic microorganisms as potential growth promoters of banana. Biocontrol 53:541–553. doi:10.1007/s10526-007-9093-1

    Article  Google Scholar 

  • Unterseher M, Schnittler M (2009) Dilution-to-extinction cultivation of leaf-inhabiting endophytic fungi in beech (Fagus sylvatica L.)—Different cultivation techniques influence fungal biodiversity assessment. Mol Ecol 113:645–654. doi:10.1016/j.mycres.2009.02.002

    Google Scholar 

  • Unterseher M, Reiher A, Finstermeier K, Otto P, Morawetz W (2007) Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycol Progr 6:201–212. doi:10.1007/s11557-007-0541-1

    Article  Google Scholar 

  • Wang Y, Guo LD (2007) A comparative study of endophytic fungi in needles, bark, and xylem of Pinus tabulaeformis. Can J Bot 85:911–917. doi:10.1139/B07-084

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogeneics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Xu J, Ebada SS, Proksch P (2010) Pestalotiopsis a highly creative genus: chemistry and bioactivity of secondary metabolites. Fungal Divers. doi:10.1007/s13225-010-0055-z

    Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China Grants (No. 30930005 and 30870087) and the Chinese Academy of Sciences Grant (No. KSCX2-YW-Z-0935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Dong Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Guo, LD. & Hyde, K.D. Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Diversity 47, 85–95 (2011). https://doi.org/10.1007/s13225-010-0086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-010-0086-5

Keywords

Navigation