Skip to main content
Log in

Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, a new hierarchical nanostructure consisting of zinc oxide (ZnO) and titanium dioxide (TiO2) was prepared by an electrospinning process followed by a hydrothermal technique for use as a photocatalyst for dye degradation. First, the electrospinning of a colloidal solution consisting of titanium isopropoxide/poly(vinyl acetate)/zinc nanoparticles was performed to produce polymeric nanofibers embedded in solid nanoparticles. Calcination of the obtained electrospun nanofiber mats in air at 600 °C produced TiO2 nanofibers containing ZnO nanoparticles (i.e., ZnO-doped TiO2 nanofibers). The ZnO nanoparticles formed were then exploited as seeds to produce the outgrowth ZnO branches around the TiO2 nanofibers using the hydrothermal technique. Photodegradation of methyl red and rhodamine B (RB) dyes was examined individually using four photocatalysts: ZnO nanoparticles prepared by the same hydrothermal technique, pristine TiO2 nanofibers, ZnO-doped TiO2 nanofibers and the produced nanostructure. The results showed that the introduced ZnO-TiO2 hierarchical nanostructure can eliminate all the methyl red dye within 90 min and the rhodamine B dye within 105 min. However, the other three nanostructures could not totally remove any of the dyes, even after 3 h. Therefore, the introduced nanostructure has higher photocatalytic activity than any of its ingredients individually, which highlights the advantages of synthesizing this novel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Jadhav, G. K. Parshetti, S. D. Kalme, and S. P. Govindwar, Chemosphere, 68, 394 (2007).

    Article  CAS  Google Scholar 

  2. F. Han, V. S. R. Kambala, M. Srinivasan, D. Rajarathnam, and R. Naidu, Appl. Catal. A: Gen., 359, 25 (2009).

    Article  CAS  Google Scholar 

  3. M. A. Rauf and S. S. Ashraf, Chem. Eng. J., 151, 10 (2009).

    Article  CAS  Google Scholar 

  4. X. Li, K. Lv, K. Deng, J. Tang, R. Su, J. Sun, and L. Chen, Mater. Sci. Eng. B, 158, 40 (2009).

    Article  CAS  Google Scholar 

  5. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995).

    Article  CAS  Google Scholar 

  6. V. Sukharev and R. Kershaw, J. Photochem. Photobiol. A, 98, 165 (1996).

    Article  CAS  Google Scholar 

  7. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, J. Photochem. Photobiol. A, 85, 247 (1995).

    Article  CAS  Google Scholar 

  8. X. Fu, L. A. Clark, Q. Yang, and M. A. Anderson, Environ. Sci. Technol., 30, 647 (1996).

    Article  CAS  Google Scholar 

  9. Y. Shaogui, Q. Xie, L. Xinyong, L. Yazi, C. Shuo, and C. Guohua, Phys. Chem. Chem. Phys., 6, 659 (2004).

    Article  Google Scholar 

  10. N. Sobana and M. Swaminathan, Sep. Purif. Technol., 56, 101 (2007).

    Article  CAS  Google Scholar 

  11. C. Shifu, Z. Wei, Z. Sujuan, and L. Wei, Chem. Eng. J., 148, 263 (2009).

    Article  CAS  Google Scholar 

  12. Y. J. Yang, J. G. Zhao, and S. Hu, Electrochem. Commun., 9, 2681 (2007).

    Article  CAS  Google Scholar 

  13. H. Y. Yap, B. Ramaker, A. V. Sumant, and R. W. Carpick, Diamond Relat. Mater., 15, 1622 (2006).

    Article  CAS  Google Scholar 

  14. P. M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Nature, 375, 769 (1995).

    Article  Google Scholar 

  15. M. Knez et al., Nano Lett., 3, 1079 (2003).

    Article  CAS  Google Scholar 

  16. N. V. Quy, N. D. Hoa, W. J. Yu, Y. S. Cho, G. S. Choi, and D. J. Kim, Nanotechnology, 17, 2156 (2006).

    Article  Google Scholar 

  17. X. M. Yang, T. Y. Dai, Z. X. Zhu, and Y. Lu, Polymer, 48, 4021 (2007).

    Article  CAS  Google Scholar 

  18. H. Hosseinkhania, M. Hosseinkhani, F. Tian, H. Kobayashi, and Y. Tabata, Biomaterials, 27, 4079 (2006).

    Article  Google Scholar 

  19. J. D. Hartgerink, E. Beniash, and S. I. Stupp, Science, 294, 1684 (2001).

    Article  CAS  Google Scholar 

  20. N. R. Chiou, C. Lu, J. J. Guan, L. J. Lee, and A. J. Epstein, Nature Nanotechnology, 147, 354 (2007).

    Article  Google Scholar 

  21. R. Haggenmueller, F. Du, J. E. Fischer, and K. I. Winey, Polymer, 47, 2381 (2006).

    Article  CAS  Google Scholar 

  22. X. Y. Zhang, W. J. Goux, and S. K. Manohar, J. Am. Chem. Soc., 126, 4502 (2004).

    Article  CAS  Google Scholar 

  23. C. H. Kim, Y. H. Jung, H. Y. Kim, D. R. Lee, N. Dharmaraj, and K. E. Choi, Macromol. Res., 14, 59 (2006).

    CAS  Google Scholar 

  24. Y. H. Jung, H. Y. Kim, D. R. Lee, S. Y. Park, and M. S. Khil, Macromol. Res., 13, 385 (2005).

    CAS  Google Scholar 

  25. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, D. K. Park, S. J. Park, and H. Y. Kim, Macromol. Res., 18, 59 (2010).

    Article  Google Scholar 

  26. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, A. A. Chaudhari, I. -H. Jung, J. H. Lee, and H. Y. Kim, Macromol. Res., 17, 688 (2009).

    CAS  Google Scholar 

  27. W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, and J. C. Nino, J. Am. Ceram. Soc., 89, 395 (2006).

    Article  CAS  Google Scholar 

  28. J. Lee, B. S. Kang, B. Hicks, T. F. Chancellor, B. H. Chu, H. T. Wang, B. G. Keselowsky, F. Ren, and T. P. Lele, Biomaterials, 29, 3743 (2008).

    Article  CAS  Google Scholar 

  29. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, M. S. Khil, and H. Y. Kim, Int. J. Appl. Ceram. Technol., 1 (2009).

  30. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, and Y. Zhang, Angew. Chem. Int. Ed. Engl., 42, 3031 (2003).

    Article  CAS  Google Scholar 

  31. B. S. Kang, S. J. Pearton, and F. Ren, Appl. Phys. Lett., 90, 084104 (2007).

    Google Scholar 

  32. C. Pacholski, A. Kornowski, and H. Weller, Angew. Chem. Int. Ed. Engl., 41, 1188 (2002).

    Article  CAS  Google Scholar 

  33. D. L. Liao, C. A. Badour, and B. Q. Liao, J. Photochem. Photobiol. A, 194, 11 (2008).

    Article  CAS  Google Scholar 

  34. D. Robert, Catal. Today, 122, 20 (2007).

    Article  CAS  Google Scholar 

  35. M. W. Xiao, L. S. Wang, Y. D. Wu, X. J. Huang, and Z. Dang, Nanotechnology, 19, 015706 (2008).

    Article  Google Scholar 

  36. J. C. Xu, M. Lu, X. Y. Guo, and H. L. Li, J. Mol. Catal., 226, 123 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser A. M. Barakat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A. et al. Photocatalytic activity of ZnO-TiO2 hierarchical nanostructure prepared by combined electrospinning and hydrothermal techniques. Macromol. Res. 18, 233–240 (2010). https://doi.org/10.1007/s13233-010-0303-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0303-9

Keywords

Navigation