Skip to main content
Log in

Morphologies and mechanical and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2010

Abstract

A novel highly epoxidized polysiloxane was synthesized to modify the diglycidyl ether of bisphenol-A (DGEBA). The mechanical and thermal properties as well as the morphology of the cured epoxy resins were examined by tensile testing, impact testing, fracture testing, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and environmental scanning electron microscopy (ESEM). The chemical structure of the highly epoxidized polysiloxane (HEPSO) was confirmed by Fourier transform infrared spectroscopy (FTIR), 29Si nuclear magnetic resonance spectroscopy (29Si NMR), and gel permeation chromatography (GPC). The T g increased by approximately 8 °C after introducing HEPSO. TGA in air showed that the initial degradation temperature for 5% weight loss (T d 5%), the temperature for 50% weight loss (T d 50%) and the residual weight percent at 800 °C (R 800) were increased after introducing HEPSO. The addition of 4 phr HEPSO2 resulted in the highest increase in tensile strength, impact strength and fracture toughness (K IC ). The morphology of the fracture surfaces show that the miscibility of polysiloxane with epoxy resin increased with increasing epoxide group in HEPSO. The high epoxide groups in HEPSO can react during the curing process, and participate chemically in the crosslinking network. HEPSO is expected to improve significantly the toughness and thermal stability of epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Beaucage, S. Sukumaran, S. J. Clarson, M. S. Kent, and D. W. Schaefer, Macromolecules, 29, 8349 (1996).

    Article  CAS  Google Scholar 

  2. M. Gonzalez, P. Kadlec, P. Štěpánek, A. Strachota, and L. Matejka, Polymer, 45, 5533 (2004).

    Article  CAS  Google Scholar 

  3. P. G. Liu, L. H. He, J. X. Song, X. Q. Liang, and H. Y. Ding, J. Appl. Polym. Sci., 109, 1105 (2008).

    Article  CAS  Google Scholar 

  4. P. G. Liu, J. X. Song, L. H. He, X. Q. Liang, H. Y. Ding, and Q. F. Li, Eur. Polym. J., 44, 940 (2008).

    Article  CAS  Google Scholar 

  5. M. Alagar, A. A. Kumar, A. A. Prabu, and A. Rajendran, Int. J. Polym. Mater., 53, 45 (2004).

    Article  CAS  Google Scholar 

  6. A. A. Prabu and M. Alagar, J. Macromol. Sci. Part A-Pure Appl. Chem., 42, 175 (2005).

    Article  Google Scholar 

  7. S. T. Lin and S. K. Huang, J. Polym. Sci. Part A: Polym. Chem., 34, 869 (1996).

    Article  CAS  Google Scholar 

  8. J. Y. Shieh, T. H. Ho, and C. S. Wang, Angew. Makromol. Chem., 224, 21 (1995).

    Article  CAS  Google Scholar 

  9. S. S. Lee and S. C. Kim, J. Appl. Polym. Sci., 64, 941 (1997).

    Article  CAS  Google Scholar 

  10. M. Gonzalez, P. Kadlec, P. Štěpánek, A. Strachota, and L. Matějka, Polymer, 45, 5533 (2004).

    Article  CAS  Google Scholar 

  11. M. Jang and J. V. Crivello, J. Polym. Sci. Part A: Polym. Chem., 41, 3056 (2003).

    Article  CAS  Google Scholar 

  12. S. S. Hou, Y. P. Chung, C. K. Chan, and P. L. Kuo, Polymer, 41, 3263 (2000).

    Article  CAS  Google Scholar 

  13. Y. Morita, J. Appl. Polym. Sci., 97, 946 (2005).

    Article  CAS  Google Scholar 

  14. M. Ochi, K. Takemiya, O. Kiyohara, and T. Nakanishi, Polymer, 41, 195 (2000).

    Article  CAS  Google Scholar 

  15. W. C. Shih, C. C. M. Ma, J. C. Yang, and H. D. Chen, J. Appl. Polym. Sci., 73, 2739 (1999).

    Article  CAS  Google Scholar 

  16. K. U. Chun-Kang and L. E. E. Yu-Der, Polymer, 48, 3 (2007).

    Google Scholar 

  17. L. Könczöl, W. Döll, U. Buchholz, and R. Mülhaupt, J. Appl. Polym. Sci., 54, 815 (1994).

    Article  Google Scholar 

  18. Q. P. Guo, F. Chen, K. Wang, and L. Chen, J. Polym. Sci. Part B: Polym. Phys., 44, 3042 (2006).

    Article  CAS  Google Scholar 

  19. W. Gong, K. Zeng, L. Wang, and S. X. Zheng, Polymer, 49, 3318 (2008).

    Article  CAS  Google Scholar 

  20. S. Q. Ma, W. Q. Liu, D. Yu, and Z. F. Wang, Macromol. Res., 18, 22 (2010).

    Article  CAS  Google Scholar 

  21. S. Ahmad, A. P. Gupta, E. Sharmin, M. Alam, and S. K. Pandey, Prog. Org. Coat., 54, 248 (2005).

    Article  CAS  Google Scholar 

  22. S. T. Lin and S. K. Huang, J. Polym. Sci. Part A: Polym. Chem., 34, 1907 (1996).

    Article  CAS  Google Scholar 

  23. S. Q. Ma, W. Q. Liu, Q. Q. Su, and Y. F. Liu, J. Macromol. Sci. Part B-Phys., 49, 43 (2010).

    Article  CAS  Google Scholar 

  24. S. Q. Ma, W. Q. Liu, C. H. Hu, Z. F. Wang, and C. Y. Tang, Macromol. Res., 18, 392 (2010).

    Article  CAS  Google Scholar 

  25. J. M. Barton, J. Macromol. Sci. Part A-Pure Appl. Chem., 8, 25 (1974).

    Article  CAS  Google Scholar 

  26. Z. K. Chen, G. Yang, J. P. Yang, S. Y. Fu, L. Ye, and Y. G. Huang, Polymer, 50, 1316 (2009).

    Article  CAS  Google Scholar 

  27. A. J. Kinloch and A. C. Taylor, J. Mater. Sci., 37, 433 (2002).

    Article  CAS  Google Scholar 

  28. B. B. Johnsen, A. J. Kinloch, R. D. Mohammed, A. C. Taylor, and S. Sprenger, Polymer, 48, 530 (2007).

    Article  CAS  Google Scholar 

  29. N. Chikhi, S. Fellahi, and M. Bakar, Eur. Polym. J., 38, 251 (2002).

    Article  CAS  Google Scholar 

  30. R. Thomas, D. Yumei, H. Yuelong, Y. Le, P. Moldenaers, Y. Weimin, T. Czigany, and S. Thomas, Polymer, 49, 278 (2008).

    Article  Google Scholar 

  31. L.-L. Lin, T.-H. Ho, and C.-S. Wang, Polymer, 38, 1997 (1997).

    Article  CAS  Google Scholar 

  32. G. Yang, B. Zheng, J. P. Yang, G. S. Xu, and S. Y. Fu, J. Polym. Sci. Part A: Polym. Chem., 46, 612 (2008).

    Article  CAS  Google Scholar 

  33. P. G. Parzuchowski, M. Kizlinska, and G. Rokicki, Polymer, 48, 1857 (2007).

    Article  CAS  Google Scholar 

  34. S. Nagendiran and S. P. M. Alagar, J. Appl. Polym. Sci., 106, 1263 (2007).

    Article  CAS  Google Scholar 

  35. S. Lin and S. Huang, J. Polym. Res., 1, 151 (1994).

    Article  CAS  Google Scholar 

  36. M. H. Hou, W. Q. Liu, Q. Q. Su, and Y. F. Liu, Polym. J., 39, 696 (2007).

    Article  CAS  Google Scholar 

  37. S.-S. Hou, Y.-P. Chung, C.-K. Chan, and P.-L. Kuo, Polymer, 41, 3263 (2000).

    Article  CAS  Google Scholar 

  38. S. Ahmad, S. M. Ashraf, E. Sharmin, A. Mohomad, and M. Alam, J. Appl. Polym. Sci., 100, 4981 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqu Liu.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s13233-010-1217-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Ma, S., Wang, Z. et al. Morphologies and mechanical and thermal properties of highly epoxidized polysiloxane toughened epoxy resin composites. Macromol. Res. 18, 853–861 (2010). https://doi.org/10.1007/s13233-010-0912-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0912-3

Keywords

Navigation