Skip to main content
Log in

Surface modification of montmorillonite (MMT) using column chromatography technique and its application in silicone rubber nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Surface modification of montmorillonite (MMT) was done to improve the basal spacing using a column chromatography technique with quaternary long chain ammonium salt as an intercalent. An increase in d-spacing of organically modified montmorillonite (OMMT) was confirmed by X-ray diffraction and found to increase from 16 to 22 Å. The d-spacing was maximal (22 Å) due to ion exchange column of sufficient length (35 cm) and diameter (5 cm), which provides maximum retention time for proper ion exchange between MMT and ion-exchange resin. OMMT: silicone nanocomposites were prepared by solution blending and then compounded and molded on two roll mill and compression molding machines, respectively. The amount of loading of OMMT was in the range of 2–10 wt%. The rubber chains were uniformly dispersed within and between the exfoliated OMMT plates. The extent of dispersion was measured using atomic force microscopy. The mechanical, thermal, and physical properties were studied. Increased amounts of OMMT loading showed increased silicone:OMMT nanocomposite properties compared to those of pristine silicone rubber due to OMMT exfoliation and uniform dispersion with good wet ability of the rubber chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. P. Giannelis, Adv. Mater., 8, 29 (1996).

    Article  CAS  Google Scholar 

  2. G. Lagaly and T. J. Pinnavaia, Appl. Clay Sci., 15, 303 (1999).

    Google Scholar 

  3. V. K. Rana, A. K. Pandey, R. P. Singh, B. Kumar, S. Mishra, C.-S. Ha, Macromol. Res., 18, 713 (2010).

    Article  CAS  Google Scholar 

  4. K. M. Park, J. K. Jung, K. D. Park, S. Y. Lee, and M. C. Lee, Macromol. Res., 16, 517 (2008).

    Article  CAS  Google Scholar 

  5. V. K. Rana, O. S. Kushwaha, R. P. Singh, S. Mishra, C.-S. Ha, Macromol. Res., 18, 845 (2010).

    Article  CAS  Google Scholar 

  6. M. Biswas and S. Sinha Ray, Polymer, 39, 6423 (1998).

    Article  CAS  Google Scholar 

  7. E. P. Giannelis, R. Krishnamoorti, and E. Manias, Adv. Polym. Sci., 138, 108 (1999).

    Google Scholar 

  8. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. J. Lunigato, J. Polym. Sci. Part A: Polym. Chem., 31, 983 (1993).

    Article  CAS  Google Scholar 

  9. K. Jeong, W. Lee, J. Cha, C. R. Park, Y. W. Cho, and I. C. Kwon, Macromol. Res., 16, 57 (2008).

    Article  CAS  Google Scholar 

  10. H. Jung, M. K. Jang, J. W. Nah, and Y. B. Kim, Macromol. Res., 17, 265 (2009).

    Article  CAS  Google Scholar 

  11. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater., 13, 3516, (2001).

    Article  CAS  Google Scholar 

  12. R. Krishnamoorti and E. P. Giannelis, Macromolecules, 30, 4097 (1997).

    Google Scholar 

  13. M. Zanetti, S. Lomakin, and G. Camino, Macromol. Mater. Eng., 1, 279 (2000).

    Google Scholar 

  14. T. H. Kim, K. Kim, and G. H. Park, Macromol. Res., 17, 770 (2009).

    Article  CAS  Google Scholar 

  15. M. Alexandre and P. Dubosis, Mater. Sci. Eng., 1, R–28, (2001).

    Google Scholar 

  16. N. Hasegawa, M. Kawasumi, M. Kato, A. Usuki, and A. Okada, J. Appl. Polym. Sci., 67, 87 (1998).

    Article  CAS  Google Scholar 

  17. L. Boogh, B. Pettersson, and J. A. E. Manson, Polymer, 40, 2249 (1999).

    Google Scholar 

  18. I. C. Um, T. H. Kim, H. Y. Kweon, C. S. Ki, and Y. H. Park, Macromol. Res., 17, 785 (2009).

    Article  CAS  Google Scholar 

  19. B. K. G. Theng, Formation and Properties of Clay-Polymer Complexes, Elsevier, Amsterdam, 1979.

    Google Scholar 

  20. M. Arroyo, M. A. Lopez-Machado, and B. Herrero, Polymer, 43, 3699 (2000).

    Google Scholar 

  21. Y. I. Jeong, D. H. Seo, D. G. Kim, C. Choi, M. K. Jang, J. W. Nah, and Y. Park, Macromol. Res., 17, 538 (2009).

    Article  CAS  Google Scholar 

  22. E. Benavente, M. A. Santa Ana, F. Mendizabal, G. Gonzalez, Coord. Chem. Rev., 87, 224 (2002).

    Google Scholar 

  23. S. K. Srivastava, M. Pramanik, D. Palit, B. K. Mathur, A. K. Kar, B. K. Samantaray, H. Haeuseler, and W. Cordes, Chem. Mater., 13, 4342 (2001).

    Article  CAS  Google Scholar 

  24. T. J. Pinnavaia, Science, 220, 365 (1983).

    Article  CAS  Google Scholar 

  25. S. I. Jeong, Y. M. Lee, and H. Shin, Macromol. Res., 16, 567 (2008).

    Article  CAS  Google Scholar 

  26. K. D. Min, W. H. Park, J. H. Youk, and Y. J. Kwak, Macromol. Res., 16, 626 (2008).

    Article  CAS  Google Scholar 

  27. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997).

    Article  CAS  Google Scholar 

  28. P. H. Nam, P. Maiti, M. Okamoto, T. Kotaka, N. Hasegawa, and A. Usuki, Polymer, 42, 9633 (2001).

    Article  CAS  Google Scholar 

  29. M. Arroyo, M. A. Lopez-Manchado, and B. Herrero, Polymer, 44, 2447 (2003).

    Article  CAS  Google Scholar 

  30. A. Usuki, A. Tukigase, and M. Kato, Polymer, 43, 2185 (2002).

    Article  CAS  Google Scholar 

  31. L. Dewimille, B. Bresson, and L. Bokobza, Polymer, 46, 4135 (2005).

    Article  CAS  Google Scholar 

  32. A. Tidjani and C. A. Wilkie, Polym. Degrad. Stab., 74, 33 (2001).

    Article  CAS  Google Scholar 

  33. N. G. Shimpi and S. Mishra, Indian Patent 526/MUM/2009 (2009).

  34. M. A. Lopez-Manchada, B. Herrero, and M. Arroyo, Polym. Int., 52, 1070 (2003).

    Article  Google Scholar 

  35. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurachi, and O. J. Kamigaito, Appl. Polym. Sci., 49, 1259 (1993).

    Article  CAS  Google Scholar 

  36. J. H. Do, J. H. An, Y. S. Joun, D. J. Chung, and J. H. Kim, Macromol. Res., 16, 695 (2008).

    Article  CAS  Google Scholar 

  37. T. Agag, T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001).

    Article  CAS  Google Scholar 

  38. M. D. Lincoln, A. R. Vaia, Z.-G. Wang, S. B. Hsiao, and R. Krishnamoorit, Polymer, 42, 9975 (2000).

    Article  Google Scholar 

  39. S. Mishra and N. G. Shimpi, J. Sci. Ind. Res., 64, 744 (2005).

    CAS  Google Scholar 

  40. N. G. Shimpi and S. Mishra, J. Appl. Polym. Sci., 98, 2563 (2005).

    Article  Google Scholar 

  41. S. Mishra and N. G. Shimpi, J. Appl. Polym. Sci., 104, 2018 (2007).

    Article  CAS  Google Scholar 

  42. S. Mishra and N. G. Shimpi, J. Nanotechnol. Appl., 1, 18 (2006).

    Google Scholar 

  43. S. Mishra, S. S. Sonavane, and N. G. Shimpi, Appl. Clay Sci., 48, 997 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Shimpi, N.G. & Mali, A.D. Surface modification of montmorillonite (MMT) using column chromatography technique and its application in silicone rubber nanocomposites. Macromol. Res. 20, 44–50 (2012). https://doi.org/10.1007/s13233-012-0003-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0003-8

Keywords

Navigation