Skip to main content
Log in

Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) was synthesized using condensation polymerization of L-lactic acid using a controlled ultrasonic cavitation technique. Polystyrene (PS) was used to prepare the PS:PLA and PS:PLA:organically modified montmorillonite (OMMT) composites. PS was dissolved in benzene (10:90) and kept overnight for dissolution. Meanwhile, surface modification of montmorillonite was done using a column chromatography technique and referred to as OMMT. The d-spacing was found to be 22 Å after modification due to sufficient column length and diameter with good retention time during ion exchange. PLA and OMMT were kept in hot air oven at 100 oC for 30 min to remove the moisture. The mixtures of 10%, 15%, 20%, 25%, and 30% of PS:PLA:OMMT were subjected to ultrasonic irradiation (50 Hz) for homogenization and to form a biodegradable polymer nanocomposite sheet (5 × 5 cm2). The amount of OMMT loading was from 0.5–5 mass%. These composites were subjected to degradation in minimal medium using Pseudomonas aeruginosa bacteria at controlled conditions, and the polymer is a major source of carbon. The degradation was confirmed using scanning electron microscopy, extracellular protein content change, biomass production, and % degradation with respect to time (up to 28 days) after incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kumar, M. K. Yakubu, and R. D. Anandjiwala, Express Polymer Lett., 4, 423 (2010).

    Article  CAS  Google Scholar 

  2. E. Chiellini, A. Corti, S. D’Antone, and R. Solaro, Prog. Polym. Sci., 28, 963 (2003).

    Article  CAS  Google Scholar 

  3. G. G. D. Silva, P. J. A. Sobral, R. A. Carvalho, P. V. A. Bergo, O. Mendieta-Taboada, and A. M. Q. B. Habitante, J. Polym. Environ., 16, 276 (2008).

    Article  CAS  Google Scholar 

  4. Y. H. Yun and S.-D. Yoon, Polym. Bull., 64, 553 (2010).

    Article  CAS  Google Scholar 

  5. D. Lesinsky, J. Fritz, and R. Braun, Bioresour. Technol., 96, 197 (2005).

    Article  CAS  Google Scholar 

  6. K. Fukushima, C. Abbate, D. Tabuani, M. Gennari, and G. Camino, Polym. Degrad. Stab., 94, 1646 (2009).

    Article  CAS  Google Scholar 

  7. V. Siracusaa, P. Rocculib, S. Romanib, and M. D. Rosab, Trends Food Sci. Technol., 19, 634 (2008).

    Article  Google Scholar 

  8. R. P. Wool, in Degradable Polymers Principles and Applications, G. Scott and D. Gilead, Eds., Chapman and Hall, London, 1995, pp 138–168.

    Chapter  Google Scholar 

  9. K. Fukushima, D. Tabuani, C. Abbate, M. Arena, and P. Rizzarelli, Eur. Polym. J., 47, 139 (2011).

    Article  CAS  Google Scholar 

  10. R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie, and G. T. Lonergan, J. Polym. Environ., 11, 49 (2003).

    Article  CAS  Google Scholar 

  11. A. S. Asran, S. Henning, and G. H. Michler, Polymer, 51, 868 (2010).

    Article  CAS  Google Scholar 

  12. K. Fukushima, D. Tabuani, C. Abbate, M. Arena, and L. Ferreri, Polym. Degrad. Stab., 95, 2049 (2010).

    Article  CAS  Google Scholar 

  13. Y. Liua, L. M. Geeverb, J. E. Kennedy, C. L. Higginbothamb, P. A. Cahillc, and G. B. McGuinnessa, J. Mech. Behav. Biomed. Mater., 3, 203 (2010).

    Article  Google Scholar 

  14. J. Tuominen, J. Kylma, A. Kapanen, O. Venelampi, M. Itävaara, and J. Seppala, Biomacromolecules, 445, 455 (2002).

    Google Scholar 

  15. D. Klemencic, B. Simoncic, B. Tomsic, and B. Orel, Carbohydr. Polym., 80, 426 (2010).

    Article  CAS  Google Scholar 

  16. S. S. Ray and M. E. Makhatha, Polymer, 50, 4635 (2009).

    Article  Google Scholar 

  17. M. C. Upreti and R. B. Srivastava, Curr. Sci., 84, 1399 (2003).

    CAS  Google Scholar 

  18. R. Jayasekara, I. Harding, I. Bowater, G. B. Y. Christie, and G. J. Lonergan, Polym. Environ., 11, 49 (2003).

    Article  CAS  Google Scholar 

  19. M. Julinova, A. C. Dvor, M. Kova, J. Kupec, C. Huba, J. Kova, M. Kopcilova, J. Hoffmann, P. Alexy, A. Nahalkova, and I. Vaskova, J. Polym. Environ., 16, 241 (2008).

    Article  CAS  Google Scholar 

  20. X. Tang and S. Alavi, Carbohydr. Polym., 85, 7 (2011).

    Article  CAS  Google Scholar 

  21. Y.-H. Yun, Y.-J. Wee, H.-S. Byun, and S.-D. Yoon, J. Polym. Environ., 16, 12 (2008).

    Article  CAS  Google Scholar 

  22. T. Akagi, M. Higashi, T. Kaneko, T. Kida, and M. Akashi, Biomacromolecules, 7, 297 (2006).

    Article  CAS  Google Scholar 

  23. J. Arutchelvi, M. Sudhakar, A. Arkatkar, M. Doble, S. Bhaduri1, and P. V. Uppara1, Indian J. Biotechnol., 9 (2008).

  24. V. Andreoni, G. Baggi, C. Guaita, and P. Manfrin, Int. Biodeter. Biodegr., 31, 41 (1993).

    Article  CAS  Google Scholar 

  25. M. Tosin, F. Degli-Innocenti, and C. J. Bastioli, J. Environ. Polym. Degrad., 6, 79 (1998).

    Article  CAS  Google Scholar 

  26. J. Shen and J. R. Bartha, Appl. Polym. Sci., 62, 1428 (1996).

    CAS  Google Scholar 

  27. R. Gattin, A. Copinet, C. Bertrand, and Y. Couturier, J. Polym. Environ., 9, 11 (2001).

    Article  CAS  Google Scholar 

  28. A. Longieras, A. Copinet, G. Bureau, and L. Tighzert, Polym. Degrad. Stab., 83, 187 (2003).

    Article  Google Scholar 

  29. H. Pranamuda, Y. Tokiwa, and H. Tanaka, Appl. Environ. Microbiol., 63, 1637 (1997).

    CAS  Google Scholar 

  30. J. Zhang, P. Mungora, and J. Jane, Polymer, 42, 2569 (2001).

    Article  CAS  Google Scholar 

  31. I. Djordjevic, N. R. Choudhury, N. Dutta, and S. Kumar, Polymer, 50, 1682 (2009).

    Article  CAS  Google Scholar 

  32. N. G. Shimpi and S. Mishra, Indian Patent 526/MUM/2009 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navinchandra Shimpi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimpi, N., Borane, M., Mishra, S. et al. Biodegradation of polystyrene (PS)-poly(lactic acid) (PLA) nanocomposites using Pseudomonas aeruginosa . Macromol. Res. 20, 181–187 (2012). https://doi.org/10.1007/s13233-012-0026-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0026-1

Keywords

Navigation