Skip to main content
Log in

An effective method for manufacturing hollow carbon nanofibers and microstructural analysis

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hollow carbon nanofibers (HCNFs) were successfully manufactured by co-axial (core/shell) electrospinning of poly(styrene-co-acrylonitrile) (SAN) and poly(acrylonitrile) (PAN) solutions. The shell component (PAN) was converted into a turbostratic carbon structure by thermal treatment, whereas the sacrificial core component (SAN) was eliminated. SAN was found to be a very suitable material for the sacrificial core. SAN exhibited excellent co-axial electrospinnability to produce a uniform core/shell nanofiber precursor because of its immiscibility with PAN. Also, SAN had a good thermal sustainability that prevented the PAN shell from shrinking during the stabilization and carbonization processes, thus maintaining the shell structure. These two predominant properties of SAN enabled the manufacturing of uniform HCNFs with controlled inner diameters and wall thickness that ranged from 120–510 nm and 52–145 nm, respectively. The core solution properties, such as solution concentration and flow rate, were mostly effective in controlling both the outer diameters and the wall thicknesses of HCNFs. The microstructure of these HCNFs was investigated using high resolution transmission electron microscopy. The crystallite size and crystallinity of HCNFs were dependent on their wall thicknesses. As the wall thicknesses of HCNFs decreased, they developed smaller crystallites and higher crystallinities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Salvetat, J. M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Appl. Phys. A: Mater., 69, 255 (1999).

    Article  CAS  Google Scholar 

  2. S. Gilje, S. Han, M. Wang, K. L. Wang, and R. B. Kaner, Nano Lett., 7, 3394 (2007).

    Article  CAS  Google Scholar 

  3. V. I. Merkulov, A. V. Melechko, M. A. Guillorn, D. H. Lowndes, and M. L. Simpson, Appl. Phys. Lett., 79, 2970 (2001).

    Article  CAS  Google Scholar 

  4. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. S. Ruoff, Chem. Mater., 10, 260 (1998).

    Article  CAS  Google Scholar 

  5. K. B. K. Teo, S.-B. Lee, M. Chhowalla, V. Semet, V. T. Binh, O. Groening, M. Castignolles, A. Loiseau, G. Pirio, P. Legagneux, D. Pribat, D. G. Hasko, H. Ahmed, G. A. J. Amaratunga, and W. I. Milne, Nanotechnology, 14, 204 (2003).

    Article  CAS  Google Scholar 

  6. E. Zussman, X. Chen, W. Ding, L. Calabri, D. A. Dikin, J. P. Quintana, and R. S. Ruoff, Carbon, 43, 2175 (2005).

    Article  CAS  Google Scholar 

  7. E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Chem. Phys. Lett., 413, 188 (2005).

    Article  CAS  Google Scholar 

  8. J. Liwen and Z. Xiangwu, Nanotechnology, 20, 155705 (2009).

    Article  Google Scholar 

  9. E. Zussman, A. L. Yarin, A. V. Bazilevsky, R. Avrahami, and M. Feldman, Adv. Mater., 18, 348 (2006).

    Article  CAS  Google Scholar 

  10. C. Haifeng and S. Liangkui, Acta Polym. Sin., 0, 61 (2009).

    Google Scholar 

  11. L. Ji and X. Zhang, Carbon, 47, 3219 (2009).

    Article  CAS  Google Scholar 

  12. C. Kim and K. S. Yang, Appl. Phys. Lett., 83, 1216 (2003).

    Article  CAS  Google Scholar 

  13. S. Y. Gu, J. Ren, and G. J. Vancso, Eur. Polym. J., 41, 2559 (2005).

    Article  CAS  Google Scholar 

  14. M. Lallave, J. Bedia, R. Ruiz-Rosas, J. Rodríguez-Mirasol, T. Cordero, J. C. Otero, M. Marquez, A. Barrero, and I. G. Loscertales, Adv. Mater., 19, 4292 (2007).

    Article  CAS  Google Scholar 

  15. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  16. S. N. Arshad, M. Naraghi, and I. Chasiotis, Carbon, 49, 1710 (2011).

    Article  CAS  Google Scholar 

  17. D. Li, Y. Wang, and Y. Xia, Nano Lett., 3, 1167 (2003).

    Article  CAS  Google Scholar 

  18. C. Kim, S.-H. Park, J.-I. Cho, D.-Y. Lee, T.-J. Park, W.-J. Lee, and K.-S. Yang, J. Raman Spectrosc., 35, 928 (2004).

    Article  CAS  Google Scholar 

  19. L. Ji and X. Zhang, Electrochem Commun, 11, 795 (2009).

    Article  CAS  Google Scholar 

  20. C. Kim, Y. I. Jeong, B. T. N. Ngoc, K. S. Yang, M. Kojima, Y. A. Kim, M. Endo, and J. W. Lee, Small, 3, 91 (2007).

    Article  CAS  Google Scholar 

  21. R. Srikar A. L. Yarin, and C. M. Megaridis, Nanotechnology, 20, 275706 (2009).

    Article  Google Scholar 

  22. Y. Yu, L. Gu, C. Wang, A. Dhanabalan, P. A. van Aken, and J. Maier, Angew. Chem. Int. Ed., 48, 6485 (2009).

    Article  CAS  Google Scholar 

  23. A. K. Moghe and B. S. Gupta, Polym. Rev., 48, 353 (2008).

    Article  CAS  Google Scholar 

  24. J. D. Peterson, S. Vyazovkin, and C. A. Wight, J. Phys. Chem. B, 103, 8087 (1999).

    Article  CAS  Google Scholar 

  25. B.-S. Lee and W.-R. Yu, Macromol. Res., 18, 162 (2010).

    Article  CAS  Google Scholar 

  26. A. ya and H. Marsh, J. Mater. Sci., 17, 309 (1982).

    Article  Google Scholar 

  27. M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).

    Article  CAS  Google Scholar 

  28. M. K. Jain and A. S. Abhiraman, J. Mater. Sci., 22, 278 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woong-Ryeol Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, BS., Park, KM., Yu, WR. et al. An effective method for manufacturing hollow carbon nanofibers and microstructural analysis. Macromol. Res. 20, 605–613 (2012). https://doi.org/10.1007/s13233-012-0087-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0087-1

Keywords

Navigation