Skip to main content
Log in

Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A green synthesis of size-controllable, uniform gold nanospheres is reported. The size of the gold particles can be selectively tuned from nanometer to submicrometer regimes with narrow size distribution through pH adjustment of the solution. Based on the employed green chemical reduction method, soluble starch is used as both reducing agent and stabilizer. Soluble starch is generally a very weak reducing agent. However, under an alkaline condition, its reducing efficiency is enhanced by the concomitant generation of reducing species as the starch molecules are alkaline degraded. The in situ generated reducing species nucleate and grow gold nanoparticles. The growth mechanism of gold particles is systematically investigated and proposed. The synthesized gold colloid is very stable and can be kept over 4 months without precipitation, aggregation, or any significant changes. Moreover, all processes of this method are simple and environmentally friendly, and no complex instrument is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, Anal. Chem., 77, 338 (2005).

    Article  Google Scholar 

  2. J. A. Seelenbinder, C. W. Brown, P. Pivarnik, and A. G. Rand, Anal. Chem., 71, 1963 (1999).

    Article  CAS  Google Scholar 

  3. C. S. Thaxton, D. G. Georganpoulou, and C. A. Mirikin, Clin. Chim. Acta, 363,120 (2006).

    Article  CAS  Google Scholar 

  4. D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian, J. Electrochem. Soc., 150, 412 (2003).

    Article  Google Scholar 

  5. B. Hvolbeak, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov, Nanotoday, 2, 14 (2007).

    Google Scholar 

  6. M. Sametband, I. Shweky, U. Banin, D. Mandler, and J. Almog, Chem. Commun., 1142 (2007).

  7. J. Turkevich, P. C. Stevenson, and J. Hillier, J. Phys. Chem., 57, 670 (1953).

    Article  CAS  Google Scholar 

  8. M. K. Corbierre, J. Beerens, and R. B. Lennox, Chem. Matter., 17, 5774 (2005).

    Article  CAS  Google Scholar 

  9. S. Link, Z. L. Wang, and M. A. El-Sayed, J. Phys. Chem. B, 103, 3529 (1999).

    Article  CAS  Google Scholar 

  10. Y. Sun and Y. Xia, Science, 298, 2176 (2002).

    Article  CAS  Google Scholar 

  11. S. Guo and E. Wang, Inorg. Chem., 46, 6740 (2007).

    Article  CAS  Google Scholar 

  12. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, Chem. Rev., 107, 2228 (2007).

    Article  CAS  Google Scholar 

  13. P. Raveendran, J. Fu, and S. L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003).

    Article  CAS  Google Scholar 

  14. P. Raveendran, J. Fu, and S. L. Wallen, Green Chem., 8, 34 (2006).

    Article  CAS  Google Scholar 

  15. H. Huang and X. Yang, Biomacromolecules, 5, 2340 (2004).

    Article  CAS  Google Scholar 

  16. Z.-M. Qi, H.-S. Zhou, N. Matsuda, I. Honma, K. Shimada, A. Takatsu, and K. Kato, J. Phys. Chem. B, 108, 7006 (2004).

    Article  CAS  Google Scholar 

  17. N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, Carbohydr. Res., 341, 2012 (2006).

    Article  CAS  Google Scholar 

  18. W. Yang, Y. Ma, J. Tang, and X. Yang, Colloids Surf. A: Physicochem. Eng. Asp., 302, 628 (2007).

    Article  CAS  Google Scholar 

  19. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, and X. Peng, J. Am. Chem. Soc., 129, 13939 (2007).

    Article  CAS  Google Scholar 

  20. H. Zhang, J.-J. Xu, and H.-Y. Chen, J. Phys. Chem. C, 112, 13886 (2008).

    Article  CAS  Google Scholar 

  21. S. Ekgasit, N. Pattayakorn, D. Tongsakul, C. Thammacharoen, and T. Kongyou, Anal. Sci., 23, 863 (2007).

    Article  CAS  Google Scholar 

  22. A. Usher, D. C. McPhail, and J. Brugger, Geochim. Cosmochim. Acta, 73, 3359 (2009).

    Article  CAS  Google Scholar 

  23. S. Link and M. A. El-sayed, J. Phys. Chem. B, 103, 4212 (1999).

    Article  CAS  Google Scholar 

  24. J. M. Krochta, J. S. Hudson, and S. J. Tillin, Am. Chem. Soc. Div. Fuel Chem., 32, 148 (1987).

    CAS  Google Scholar 

  25. O. P. Golova and N. I. Nosova, Russ. Chem. Rev., 42, 327 (1973).

    Article  Google Scholar 

  26. D. S. Jackson, C. Choto-Owen, R. D. Waniska, and L. W. Rooney, Cereal Chem., 65, 493 (1988).

    CAS  Google Scholar 

  27. C. J. Knill and J. F. Kennedy, Carbohydr. Polym., 51, 281 (2003).

    Article  CAS  Google Scholar 

  28. J.-A. Han and S.-T. Lim, Carbohydr. Polym., 55, 193 (2004).

    Article  CAS  Google Scholar 

  29. R. Kizil, J. Irudayaraj, and K. Seetharaman, J. Agric. Food Chem., 50, 3912 (2002).

    Article  CAS  Google Scholar 

  30. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed., John Wiley & Sons Ltd, Chichester, 2001.

    Google Scholar 

  31. N. R. Jana, L. Gearheart, and C. J. Murphy, Chem. Mater., 13, 2313 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanong Ekgasit.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pienpinijtham, P., Thammacharoen, C. & Ekgasit, S. Green synthesis of size controllable and uniform gold nanospheres using alkaline degradation intermediates of soluble starch as reducing agent and stabilizer. Macromol. Res. 20, 1281–1288 (2012). https://doi.org/10.1007/s13233-012-0162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-012-0162-7

Keywords

Navigation