Skip to main content
Log in

Effect of TiO2 on PVDF/PMMA composite films prepared by thermal casting

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Melt-extruded poly(vinylidene fluoride) (PVDF)/poly(methyl methacrylate) (PMMA) blend films were prepared at different rutile (titanium dioxide, TiO2) concentrations for use as a protective sheet on a photovoltaic cell and module. The rheology, structure, morphology, crystalline behavior, thermal, and mechanical properties of PVDF/PMMA/TiO2 composite films were investigated through reflectance difference spectrometer (RDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and color spectrometry. The results showed that the blended material and its film have favorable thermal and mechanical properties. The TiO2 is finely dispersed in the composite, as shown by the crystalline regions of the PVDF and the homogeneous amorphous regions consisting of PVDF and PMMA, resulting in advantageous and optical properties of PVDF/PMMA/TiO2 composite films. However, the TiO2 can also greatly narrow the thermally stable region of the PVDF in PVDF/PMMA/TiO2 composite film because of the catalytic decomposition effect. The tensile strength and elongation at break are higher than those of a PVDF/PMMA blend as TiO2 content increases. Increases in the crystalline behavior and rheological properties appeared below 20 wt% TiO2 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Dohany, in Encyclopedia of Chemical Technology, John Wiley & Sons, New York, 1994, Vol. 11, p 694.

    Google Scholar 

  2. A. J. Lovinger, in Developments in Crystalline Polymers, G. C. Bassett, Ed., Elsevier, Barking, 1982, Vol. 1, p 195.

    Google Scholar 

  3. J. E. Dohany and J. S. Humphrey, in Encyclopedia of Polymer Science and Engineering, H. F. Mark, N. M. Bikales, C. G. Overberger, and G. Menges, Eds., John Wiley & Sons, New York, 1987, Vol. 17, p 532.

    Google Scholar 

  4. K. S. Kim and S. J. Park, Macromol. Res., 18, 981 (2010).

    Article  CAS  Google Scholar 

  5. D. W. Chae and S. M. Hong, Macromol. Res., 19, 326 (2011).

    Article  CAS  Google Scholar 

  6. D. Silagy, P. Bussi, and G. Marot, J. Fluorine Chem., 104, 79 (2000).

    Article  CAS  Google Scholar 

  7. Z. H. Liu, P. Macechal, and R. Jerome, Polymer, 39, 1779 (1998).

    Article  CAS  Google Scholar 

  8. T. Nishi, Polymer, 27, 483 (1978).

    CAS  Google Scholar 

  9. T. Nishi and T. T. Wang, Macromolecules, 8, 909 (1975).

    Article  CAS  Google Scholar 

  10. K. Nakagawa and Y. Ishida, J. Polym. Sci. Part B: Polym. Phys., 1, 2153 (1973).

    Google Scholar 

  11. C. Huang and L. Zhang, J. Appl. Polym. Sci., 92, 5 (2004).

    Google Scholar 

  12. H. Horibe and F. Baba, Nippon Kagaku Kaishi, 115 (2000).

  13. E. S. Park, E. B. Cho, and D. J. Kim, Macromol. Res., 7, 617 (2007).

    Article  Google Scholar 

  14. R. E. Bernstein, C. A. Cruz, D. R. Paul, and J. W. Barlow, Macromolecules, 10, 681 (1977).

    Article  CAS  Google Scholar 

  15. H. Yoshida, J. Therm. Anal., 49, 101 (1997).

    Article  CAS  Google Scholar 

  16. H. Yoshida, G. Z. Zhang, and T. Kitamura, J. Therm. Anal. Calorim., 64, 577 (2001).

    Article  CAS  Google Scholar 

  17. Y. Hirata and T. Kotaka, Polym. J., 13, 273 (1981).

    Article  CAS  Google Scholar 

  18. J. Kijovic, H. L. Luo, and C. D. Han, Polym. Eng. Sci., 22, 234 (1982).

    Article  Google Scholar 

  19. S. R. Murff, J. W. Barlow, and D. R. Paul, Adv. Chem. Ser., 211, 313 (1986).

    Article  CAS  Google Scholar 

  20. S. Schneider, X. Drujon, J. C. Wittmann, and B. Lotz, Polymer, 42, 8799 (2000).

    Article  Google Scholar 

  21. Z. P. Fang and Y. Z. Xu, J. Mater. Sci. Eng., 21, 279 (2003).

    CAS  Google Scholar 

  22. P. He and A. C. Zhao, Macromolecule Aviso, 2, 74 (2001).

    Google Scholar 

  23. X. C. Cao, J. Ma, and X. H. Shi, Appl. Surf. Sci., 253, 2003 (2006).

    Article  CAS  Google Scholar 

  24. L. Y. Yu, H. M. Shen, and Z. L. Xu, J. Appl. Polym. Sci., 113, 1763 (2009).

    Article  CAS  Google Scholar 

  25. A. Chatterjee, J. Appl. Polym. Sci., 118, 2890 (2010).

    Article  CAS  Google Scholar 

  26. B. A. Smillie and G. M. Lenges, US Patent 0057392 (2006).

  27. L. Wei, L. Hong, and M. Z. Yong, J. Mater. Sci., 44, 2977 (2009).

    Article  Google Scholar 

  28. J. G. Lee and S. H. Kim, Macromol. Res., 19, 72 (2011).

    Article  CAS  Google Scholar 

  29. D. Z. Chen, H. Y. Yang, P. S. He, and W. A. Xhang, Compos. Sci. Technol., 65, 1593 (2005).

    Article  CAS  Google Scholar 

  30. Ye. Bormashenko, R. Pogreb, O. Stanevsky, and E. Bormashenko, Polym. Test., 23, 791 (2004).

    Article  CAS  Google Scholar 

  31. M. Kobayashi, K. Tashiro, and H. Tadokoro, Macromolecules, 8, 158 (1975).

    Article  CAS  Google Scholar 

  32. R. Gregorio Jr., J. Appl. Polym. Sci., 100, 3272 (2006).

    Article  CAS  Google Scholar 

  33. S. Ahmad, T. K. Saxena, S. Ahmad, and S. A. Agnihotry, J. Power Sources, 159, 205 (2006).

    Article  CAS  Google Scholar 

  34. K. Matsushige and T. Takemura, J. Polym. Sci. Part B: Polym. Phys., 16, 921 (1978).

    Article  CAS  Google Scholar 

  35. R. M. Hodge, G. H. Edward, and G. P. Simon, Polymer, 37, 1371 (1996).

    Article  CAS  Google Scholar 

  36. D. C. Yang and E. L. Thomas, J. Mater. Sci. Lett., 3, 919 (1984).

    Article  Google Scholar 

  37. G. A. Gallagher, R. Jakeways, and L. M. Ward, J. Polym. Sci. Part B: Polym. Phys., 29, 1147 (1991).

    Article  CAS  Google Scholar 

  38. W. Feng, E. Sun, A. Fujii, H. Wu, K. Niihara, and K. Yoshino, Bull. Chem. Soc. Jpn., 73, 2627 (2000).

    Article  CAS  Google Scholar 

  39. J. D. Rancourt and L. T. Taylor, Macromolecules, 20, 790 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hun Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.G., Kim, S.H., Kang, H.C. et al. Effect of TiO2 on PVDF/PMMA composite films prepared by thermal casting. Macromol. Res. 21, 349–355 (2013). https://doi.org/10.1007/s13233-013-1017-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1017-6

Keywords

Navigation