Skip to main content
Log in

Electrical and mechanical properties of carbon/glass hybridized long fiber reinforced polypropylene composites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The electrical percolation and hybrid effect that forms from long carbon fiber (LCF) and long glass fiber (LGF) hybridized composite in a polypropylene matrix were studied by investigating electrical and mechanical properties. As a process, the electrical and mechanical properties were investigated in terms of LCF loading at constant volume percentage in the total. The electrical resistivities of volume and surface were measured in order to learn the percolation threshold points, which were 8–9 and 10–12 volume percents of LCF loading individually. The mechanical properties, such as, were tensile and flexural modulus of the hybridized composite were obtained and compared with the prediction results using the rule of hybrid mixtures (RoHM) equation. The hybrid effect was observed in the result of the tensile modulus in the range of 6–10 volume percent of LCF loading whereas there was no hybrid effect in flexural modulus. The tensile and flexural strengths of LCF/LGF hybridized composite are 100 and 140MPa at 20 vol% of LCF loading. The tensile and flexural modulus are approximately 22 and 14 GPa at 20 vol% of LCF. The interaction between reinforced fiber and the matrix was reported and analyzed by scanning electron microscopy (SEM) and heat depletion temperature (HDT). Through the process, the mechanical strength was more related to the interaction between fiber and the polypropylene matrix than the mechanical modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thermoplastic Composite Materials, J. M. Crosby and L. A. Carlsson, Eds., ELSEVIER, 1991.

  2. C. Wang, W. Cai, X. Lu, and J. Chen, Energy Conversion and Management, 48, 2110 (2007).

    Article  CAS  Google Scholar 

  3. http://www.epa.gov/otaq/climate/regulations/420f10014.htm.

  4. J. L. Thomason, Compos. Part A: Appl. Sci. Manuf., 33, 1641 (2002).

    Article  Google Scholar 

  5. J. L. Thomason, Compos. Part A: Appl. Sci. Manuf., 36, 995 (2005).

    Article  Google Scholar 

  6. J. L. Thomason and W. M. Groenewoud, Compos. Part A: Appl. Sci. Manuf., 27, 555 (1996).

    Article  Google Scholar 

  7. J. L. Thomason and M. A. Vlug, Compos. Part A: Appl. Sci. Manuf., 27, 477 (1996).

    Article  Google Scholar 

  8. J. L. Thomason and M. A. Vlug, Compos. Part A: Appl. Sci. Manuf., 28, 277 (1997).

    Article  Google Scholar 

  9. J. L. Thomason, M. A. Vlug, G. Shipper, and H. G. L. T. Krikor, Compos. Part A: Appl. Sci. Manuf., 27, 1075 (1996).

    Article  Google Scholar 

  10. F. W. J. van Hattum, C. Leer, J. C. Viana, O. S. Carneiro, M. L. Lake, and C. A. Bernardo, Plast. Rubber Compos., 35, 247 (2006).

    Google Scholar 

  11. G. A. Wade, W. J. Cantwell, and R. C. Pond, Interface Science, 8, 363 (2000).

    Article  CAS  Google Scholar 

  12. T. P. Skourlis, C. Chassapis, and S. Manoochehri, J. Thermoplast. Compos. Mater., 10, 453 (1997).

    Google Scholar 

  13. S. -Y. Fu, B. Lauke, E. Mader, C.-Y. Yue, and X. Hu, Compos. Part A: Appl. Sci. Manuf., 31, 1117 (2000).

    Article  Google Scholar 

  14. R. Taipalus, T. Harmia, M. Q. Zhang, and K. Friedrich, Compos. Sci. Technol., 61, 801 (2001).

    Article  CAS  Google Scholar 

  15. S. -Y. Fu, B. Lauke, E. Mader, C.-Y. Yue, X. Hu, and Y.-W. Mai, J. Mater. Sci., 36, 1243 (2001).

    Article  CAS  Google Scholar 

  16. A. Markov, B. Fiedler, and K. Schulte, Compos. Part A: Appl. Sci. Manuf., 37, 1390 (2006).

    Article  Google Scholar 

  17. K. I. Winey, T. Kashiwagi, and M. F. Mu, MRS Bulletin, 32, 348 (2007).

    Article  CAS  Google Scholar 

  18. S. Kim and L. T. Drzal, J. Adhes. Sci. Technol., 23, 1623 (2009).

    Article  CAS  Google Scholar 

  19. N. Sato, T. Kurauchi, S. Sato, and O. Kamigaito, J. Mater. Sci., 26, 3891 (1991).

    Article  CAS  Google Scholar 

  20. P. Nygard, K. Redford, and C.G. Gustafson, Compos. Interfaces, 9, 365 (2002).

    Article  CAS  Google Scholar 

  21. Y. C. Ke, C. F. Long, and Z. N. Qi, J. Appl. Polym. Sci., 71, 1139 (1999).

    Article  CAS  Google Scholar 

  22. A. C. Balazs, T. Emrick, and T. P. Russell, Science, 314, 1107 (2006).

    Article  CAS  Google Scholar 

  23. M. Z. Rong, M. Q. Zhang, Y. X. Zheng, H. M. Zeng, R. Walter, and K. Friedrich, Polymer, 42, 167 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kee Yoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.W., Ma, S. & Lee, K.Y. Electrical and mechanical properties of carbon/glass hybridized long fiber reinforced polypropylene composites. Macromol. Res. 21, 767–774 (2013). https://doi.org/10.1007/s13233-013-1085-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1085-7

Keywords

Navigation