Skip to main content
Log in

A novel hybrid random copolymer poly(MAPOSS-co-NIPAM-co-OEGMA-co-2VP): Synthesis, characterization, self-assembly behaviors and multiple responsive properties

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A novel organic/inorganic hybrid amphiphilic random copolymer poly(methacrylate isobutyl POSS-co-N-isopropylacrylamide-co-oligo(ethylene glycol) methyl ether methacrylate-co-2-vinylpyridine), poly(MAPOSS-co-NIPAM-co-OEGMA-co-2VP), was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The self-assembly behavior of random copolymers in aqueous solution was investigated by dynamic light scattering (DLS) as well as transmission electron microscopy (TEM). The results indicate the novel random copolymer in water could self-assemble into spherical aggregates and the self-aggregate size displays a remarkable dependence on pH. The stimuli-responsive characteristics of these assembles were tested by means of UV-vis spectra, DLS and TEM. There is a critic Zn2+ concentration over which the aggregates can be coordinated into well-define spherical aggregate clusters. The critic Zn2+ concentration can be tuned finely through adjusting solution concentration or 2VP amount. Results from UV-vis and DLS reveal that the copolymer solutions exhibit a sharp and intensive lower critical solution temperature (LCST). Some factors such as the solution concentration, molecular weight, pH and copolymer generation, which could affect the cloud point, were studied systematically. The essentially predetermined LCST can be achieved by altering the content of 2VP or pH. In addition, these novel hybrid aggregates can undergo an association/disassociation cycle with the heating and cooling of solution and the degree of reversibility shows a strong concentration dependence. As a novel organic-inorganic hybrid material which can respond to multiple external stimuli including temperature, pH, metal ions with sharp stimuli-responsive behaviors, it is potentially used for biomedicine, catalysis, diagnostics, bioseparations, biosensors and for fundamental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. York, S. E. Kirkland, and C. L. McCormick, Adv. Drug Deliv. Rev., 60, 1019 (2008).

    Article  Google Scholar 

  2. T. H. Qu, A. R. Wang, J. F. Yuan, J. H. Shi, and Q. Y. Gao, Colloids Surf. B, 72, 94 (2009).

    Article  CAS  Google Scholar 

  3. C. H. Luo, Y. Liu, and Z. B. Li, Macromolecules, 43, 8101 (2010).

    Article  CAS  Google Scholar 

  4. D. C. Wu, Y. Liu, and C. B. He, Macromolecules, 41, 18 (2008).

    Article  CAS  Google Scholar 

  5. R. Salgado-Rodrìguez, A. Licea-Claverìe, and K. F. Arndt, Eur. Polym. J., 40, 1932 (2004).

    Article  Google Scholar 

  6. W. A. Zhang, S. H. Wang, X. H. Li, J. Y. Yuan, and S. L. Wang, Eur. Polym. J., 48, 721 (2012).

    Google Scholar 

  7. J. G. Zeng, K. Y. Shi, Y. Y. Zhang, X. H. Sun, L. Deng, X. Z. Guo, Z. J. Du, and B. L. Zhang, J. Colloid Interface Sci., 322, 6541 (2008).

    Article  Google Scholar 

  8. C. Schilli, M. F. Zhang, E. Rizzardo, S. H. Thang, Y. K. Chong, K. Edwards, G. Karlsson, and A. H. E. Muller, Macromolecules, 37, 78611 (2004).

    Article  Google Scholar 

  9. G. B. H. Chua, P. J. Roth, H. T. T. Duong, T. P. Davis, and A. B. Lowe, Macromolecules, 45, 13621 (2012).

    Article  Google Scholar 

  10. B. L. Peng, N. Grishkewich, Z. L. Yao, X. Han, H. L. Liu, and K. C. Tam, ACS Macro Lett., 1, 632 (2012).

    Article  CAS  Google Scholar 

  11. J. F. Lutz, G. Akdemir, and A. Hoth, J. Am. Chem. Soc., 128, 130461 (2006).

    Article  Google Scholar 

  12. P. J. Roth, T. P. Davis, and A. B. Lowe, Macromolecules, 45, 3221 (2012).

    Article  CAS  Google Scholar 

  13. T. H. Liu, J. Fang, Y. P. Yang, and Z. Z. Zeng, Macromol. Res., 16, 670 (2008).

    Article  CAS  Google Scholar 

  14. Y. H. Liu, X. H. Cao, M. B. Luo, Z. G. Le, and W. Y. Xu, J.Colloid Interface Sci., 329, 244 (2009).

    Article  CAS  Google Scholar 

  15. W. Chen, F. H. Meng, R. Cheng, and Z. Y. Zhong, J. Control. Release., 142, 40 (2010).

    Article  CAS  Google Scholar 

  16. W. Xiong, X. A. Gao, Y. B. Zhao, H. B. Xu, and X. L. Yang, Colloids Surf. B, 84, 103 (2011).

    Article  CAS  Google Scholar 

  17. M. Vamvakaki, D. Palioura, A. Spyrios, S. P. Armes, and S. H. Ahnastasiadis, Macromolecules, 39, 5106 (2006).

    Article  CAS  Google Scholar 

  18. Y. Q. Yang, W. J. Lin, L. J. Zhang, C. Z. Cai, W. Jiang, X. D. Guo, and Y. Qian, Macromol. Res., 21, 1012 (2013).

    Google Scholar 

  19. W. Q. Zhang, L. Q. Shi, R. J. Ma, Y. L. An, Y. L. Xu, and K. Wu, Macromolecules, 38, 8850 (2005).

    Article  CAS  Google Scholar 

  20. F. Xu, S. Z. Zeng, Y. L. Luo, and T. T. Chen, Macromol. Res., 21, 977 (2013).

    Article  CAS  Google Scholar 

  21. X. Xu, J. Song, K. Wang, Y. C. Gu, F. Luo, X. H. Tang, P. Xie, and Z. Y. Qian, Macromol. Res., 21, 871 (2013).

    Google Scholar 

  22. U. Rafique, M. Mazhar, S. Ali, and F. A. Khwajia, Synth. Met., 78, 74 (1996).

    Article  Google Scholar 

  23. A. Elmaci, J. Hacaloglu, C. Kayran, G. Sakellarion, and N. Hadjichristidis, Polym. Degrad. Stab., 94, 2023 (2009).

    Article  CAS  Google Scholar 

  24. V. P. Singh and D. P. Singh, Macromol. Res., 21, 757 (2013).

    Article  CAS  Google Scholar 

  25. Y. C. Zheng, L. Wang, R. T. Yu, and S. X. Zheng. Macromol. Chem. Phys., 213, 459 (2012).

    Google Scholar 

  26. S. W. Kuo and F. C. Chang, Prog. Polym. Sci., 36, 1650 (2011).

    Article  Google Scholar 

  27. C. J. Yang, Y. M. Deng, B. R. Zeng, C. H. Yuan, M. Chen, W. A. Luo, J. Liu, Y. T. Xu, and L. Z. Dai, J. Polym. Sci. Part A: Polym. Chem., 50, 4300 (2012).

    Article  CAS  Google Scholar 

  28. Y. M. Deng, J. Bernard, P. Alcouffe, J. Galy, L. Z. Dai, and J.-F. Gérard, J. Polym. Sci. Part A: Polym. Chem., 49, 4343 (2011).

    Article  CAS  Google Scholar 

  29. S. Perrier, C. Barner-Kowollik, J. F. Quinn, P. Vana, and T. P. Davis, Macromolecules, 35, 8301 (2002).

    Google Scholar 

  30. A. E. Smith, X. W. Xu, and C. L. McCormick, Prog. Polym. Sci., 35, 46 (2010).

    Article  Google Scholar 

  31. W. A. Zhang, B. Fang, A. Walther, and A. H. E. Mgller, Macromolecules, 42, 2563 (2009).

    Article  CAS  Google Scholar 

  32. J. F. Mu and S. X. Zheng, J. Colloid Interface Sci., 307, 377 (2007).

    Article  CAS  Google Scholar 

  33. W. A. Zhang, X. D. Zhuang, X. H. Li, Y. Lin, J. R. Bai, and Y. Chen, React. Funct. Polym., 69, 124 (2009).

    Article  CAS  Google Scholar 

  34. C. L. He, C. W. Zhao, X. H. Guo, Z. J. Guo, X. S. Chen, X. L. Zhuang, S. Y. Liu, and X. B. Jing, J. Polym. Sci. Part A: Polym. Chem., 46, 4148 (2008).

    Google Scholar 

  35. M. Changez, N. G. Kang, H. D. Koh, and J. S. Lee, Langmuir, 26, 9984 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiting Xu or Lizong Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Xie, J., Chen, L. et al. A novel hybrid random copolymer poly(MAPOSS-co-NIPAM-co-OEGMA-co-2VP): Synthesis, characterization, self-assembly behaviors and multiple responsive properties. Macromol. Res. 21, 1338–1348 (2013). https://doi.org/10.1007/s13233-013-1185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1185-4

Keywords

Navigation