Skip to main content
Log in

Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Graphene oxide/poly(acrylic acid) (GO/PAA) hybrid hydrogel was prepared using a γ-ray pre-irradiation technique. The functional groups in graphene oxide were modified to peroxide in an O2 environment with γ-ray radiation. Radical species from the thermal decomposition of peroxides initiated radical polymerization of the acrylic acid monomers. Modified GO and GO/PAA hydrogels were investigated using scanning electron microscopy and Fourier transform infrared (FTIR), Raman, and electron spin resonance spectroscopy. The thermal, mechanical, and swelling properties of GO/PAA hydrogel were studied by a tensile stress-strain curve and thermal gravimetric analysis. A genuine binary hybrid hydrogel of graphene oxide and PAA was obtained from a simple synthetic procedure based on γ-ray pre-irradiation without further additives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000).

    Article  CAS  Google Scholar 

  2. X. Lin, L. Deng, Y. Xu, and A. Dong, Soft Matter, 8, 3470 (2012).

    Article  CAS  Google Scholar 

  3. W. G. Pitt, D. R. Jack, Y. Zhao, J. L. Nelson, and J. D. Pruitt, J. Biomater. Sci. Polym. Ed., 23, 527 (2012).

    Article  CAS  Google Scholar 

  4. J. Kope ek and J. Yang, Angew. Chem. Int. Ed., 51, 7396 (2012).

    Article  Google Scholar 

  5. J. K. Oh, R. Drumright, D. J. Siegwart, and K. Matyjaszewski, Prog. Polym. Sci., 33, 448 (2008).

    Article  CAS  Google Scholar 

  6. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).

    Article  CAS  Google Scholar 

  7. N. T. Tung, T. V. Khai, H. Lee, and D. Sohn, Synth. Met., 161, 177 (2011).

    Article  CAS  Google Scholar 

  8. S. Sun and P. Wu, J. Mater. Chem., 21, 4095 (2011).

    Article  CAS  Google Scholar 

  9. J. Koo, J. Kim, H. Lee, H. Chung, Y. Lee, W. Yi, and D. Sohn, Macromol. Res., 20, 138 (2012).

    Article  CAS  Google Scholar 

  10. T. Huang, H. Xu, K. Jiao, L. Zhu, H. R. Brown, and H. Wang, Adv. Mater., 19, 1622 (2007).

    Article  CAS  Google Scholar 

  11. F. Severini and R. Gallo, J. Therm. Anal. Calorim., 30, 841 (1985).

    Article  CAS  Google Scholar 

  12. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    Article  CAS  Google Scholar 

  13. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sunitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010).

    Article  CAS  Google Scholar 

  14. L. J. Cote, F. Kim, and J. Huang, J. Am. Chem. Soc., 131, 1043 (2009).

    Article  CAS  Google Scholar 

  15. A. B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, Langmuir, 19, 6050 (2003).

    Article  CAS  Google Scholar 

  16. Ž. Šljivančanin, A. S. Milošević, Z. S. Popović, and F. R. Vukajlovic, Carbon, 54, 482 (2013).

    Article  Google Scholar 

  17. M. T. Wilson and B. J. Reeder, Biochem. J., 330, 1317 (1998).

    Google Scholar 

  18. J. I. Paredes, S. Villar-Rodil, A. Martinez-Alonso, and J. M. D. Tascón, Langmuir, 24, 10560 (2008).

    Article  CAS  Google Scholar 

  19. W. Chen, Z. Zhu, S. Li, C. Chen, and L. Yan, Nanoscale, 4, 2124 (2012).

    Article  CAS  Google Scholar 

  20. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’homme, I. A. Aksay, and R. Car, Nano Lett., 8, 36 (2008).

    Article  CAS  Google Scholar 

  21. Q. Zhuo, J. Gao, M. Peng, L. Bai, J. Deng, Y. Xia, Y. Ma, J. Zhong, and X. Sun, Carbon, 52, 559 (2013).

    Article  CAS  Google Scholar 

  22. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).

    Article  CAS  Google Scholar 

  23. L. Èirić, A. Sienkiewicz, R. Gaál, J. Jaćimović, C. Vâju, A. Magrez, and L. Forro, Phys. Rev. B, 86, 195139 (2012).

    Article  Google Scholar 

  24. L. Cirić, A. Sienkiewicz, D. M. Djokić, R. Smajda, A. Magrez, T. Kaspar, R. Nesper, and L. Forro, Phys. Status Solidi B, 247, 2958 (2010).

    Article  Google Scholar 

  25. B. Yuana, Z. Zhang, and K. Zhou, Appl. Surf. Sci., 257, 5754 (2011).

    Article  Google Scholar 

  26. L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, and Y. Liu, J. Mater. Chem., 21, 10399, (2011).

    Article  CAS  Google Scholar 

  27. J. Zhu, C-H. Lee, H.-I. Joh, H. C. Kim, and S. Lee, Carbon Lett., 13, 230 (2012).

    Article  Google Scholar 

  28. G. Socrates, Infrared Characteristic Group Frequencies, 2nd ed., Wiley, New York, 1994.

    Google Scholar 

  29. R. M. Silverstein and F. X. Webster, in Spectrometric Identification of Organic Compounds, 6th ed., John Wiley & Sons, Inc., New York, 1998.

    Google Scholar 

  30. D. H. Williams and I. Fleming, in Spectroscopic Methods in Organic Chemistry, 4th ed., McGraw Hill, New York, 1987.

    Google Scholar 

  31. K.-F. Arndt, A. Richter, S. Ludwig, J. Zimmermann, J. Kressler, D. Kuckling, and H.-J. Adler, Acta Polym., 50, 11 (2000).

    Google Scholar 

  32. M. A. Moharram, S. M. Rabie, and H. M. El-Gendy, J. Appl. Polym. Sci., 85, 1619 (2002).

    Article  CAS  Google Scholar 

  33. P. Flory, J. Chem. Rev., 35, 51 (1944).

    Article  CAS  Google Scholar 

  34. J. Yang, C. Gong, F.-K. Shi, and X.-M. Xie, J. Phys. Chem. B, 116, 12038 (2012).

    Article  CAS  Google Scholar 

  35. J. Shen, B. Yan, T. Li, Y. Long, and M. Ye, Compos. Part A: Appl. Sci. Manuf., 43, 1476 (2012).

    Article  CAS  Google Scholar 

  36. R. E. Webber, C. Creton, H. R. Brown, and J. P. Gong, Macromolecules, 40, 2919 (2007).

    Article  CAS  Google Scholar 

  37. N. Zhang, R. Li, L. Zhang, H. Chen, W. Wang, Y. Liu, T. Wu, X. Wang, W. Wang, Y. Li, Y. Zhao, and J. Gao, Soft Matter, 7, 7231 (2011).

    Article  CAS  Google Scholar 

  38. Q.-Y. Cheng, D. Zhou, Y. Gao, Q. Chen, Z. Zhang, and B.-H. Han, Langmuir, 28, 3005 (2012).

    Article  CAS  Google Scholar 

  39. C. Yu and T. Hui-min, Carbohydr. Res., 341, 887 (2006).

    Article  Google Scholar 

  40. L. Zhu, L. Zhang, Y. Tang, and J. Yang, Polym. Polym. Compos., 21, 21 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daewon Sohn.

Additional information

The image from this article is used as the cover image of the Volume 22, Issue 2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, H., Sim, J.H. et al. Graphene oxide/poly(acrylic acid) hydrogel by γ-ray pre-irradiation on graphene oxide surface. Macromol. Res. 22, 165–172 (2014). https://doi.org/10.1007/s13233-014-2025-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2025-x

Keywords

Navigation