Skip to main content
Log in

The improvement of water flux and mechanical strength of PVDF hollow fiber membranes by stretching and annealing conditions

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF) hollow fiber membranes prepared by thermally-induced phase separation (TIPS) have excellent porosity but weak tensile strength. In this study, we stretched and annealed these hollow fiber membranes in an attempt to improve their tensile strength and water permeability. This was done by introducing a stretching process into the manufacturing process. In this study, the stretching temperature ranged from 30 to 90 °C, the stretching speed ranged between 4 and 60 mm/s, and the stretching ratio was varied between 100 and 200%. According to field-emission scanning electron microscopy (SEM) images, the structure of the surface varied under different stretching conditions. The tensile strength was increased as the degree of stretching increased, and annealing conditions of 130 °C for 2 h resulted in an increase in the crystallinity. These results indicate that changing the stretching conditions can increase the water permeability and the mechanical strength of the membrane by more than 20%; these improvements are brought about by changes in the surface structure of the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. P. Rwei, J. Appl. Polym. Sci., 82, 2896 (2001).

    Article  CAS  Google Scholar 

  2. C. H. Du, Y. Y. Xu, and B. K. Zhu, J. Appl. Polym. Sci., 106, 1753 (1998).

    Google Scholar 

  3. J. H. Kim, S. S. Kim, M. S. Park, and M. S. Jang, J. Membr. Sci., 318, 201 (2008).

    Article  CAS  Google Scholar 

  4. C. H. Du, B. K. Zhu, and Y. Y. Xu, J. Appl. Polym. Sci., 104, 2254 (2007).

    Article  CAS  Google Scholar 

  5. Z. Xi, Y. Y. Xu, L. P. Zhu, C. H. Du, and B. K. Zhu, Polym. Adv. Techonol., 19, 1616 (1998).

    Google Scholar 

  6. C. H. Du, B. K. Zhu, and Y. Y. Xu, Macromol. Mater. Eng., 290, 786 (2005).

    Article  CAS  Google Scholar 

  7. B. S. Sprague, J. Macromol. Sci. B: Phys., 8, 157 (1973).

    Article  CAS  Google Scholar 

  8. G. H. Lee, J. H. Kim, K. G. Song, and S. S. Kim, Polym. Korea, 30, 175 (2006).

    CAS  Google Scholar 

  9. J. J. Kim, T. S. Jang, Y. D. Kwon, U. Y. Kim, and S. S Kim, J. Membr. Sci., 93, 209 (1994).

    Article  CAS  Google Scholar 

  10. C. Marega and A. Marigo, Eur. Polym. J., 39, 1713 (2003).

    Article  CAS  Google Scholar 

  11. J. Y. Kim, S. H. Kim, and T. Kikutani, J. Polym. Part B., 42, 395 (2004).

    Article  CAS  Google Scholar 

  12. Z. W. Wilchinsky, J. Poly. Sci., 30, 792 (1959).

    Google Scholar 

  13. B. R. Jung, Y. Son, Y. T. Lee, and N. Kim, Membrane J., 23, 80 (2013).

    CAS  Google Scholar 

  14. B. S. Sprgue, J. Macromol. Sci., 12, 182 (1973).

    Google Scholar 

  15. R. Gregorio, J. Polym. Sci., Part B: Polym. Phys., 45, 2793 (2007).

    Article  Google Scholar 

  16. R. Gregorio and E. M. Uneo, J. Mater. Sci., 34, 4489 (1999).

    Article  CAS  Google Scholar 

  17. R. Gregorio and N. C. Soucanocita, J. Phys., 28, 432 (1995).

    CAS  Google Scholar 

  18. A. Keller, Rep. Prog. Phys., 31, 623 (1968).

    Article  CAS  Google Scholar 

  19. J. M. Samon, J. M. Schultz, and B. S. Hsiao, Polymer. 41, 2169 (2000).

    Article  CAS  Google Scholar 

  20. R. S. Stein and F. H. Norris, J. Polym. Sci., 21, 381 (1956).

    Article  CAS  Google Scholar 

  21. A. Galeski, Prog. Polym. Sci., 28, 1643 (2003).

    Article  CAS  Google Scholar 

  22. K. Nakagawa and Y. Ishida, J. Polym. Sci., Part B: Polym. Phys., 11, 2153 (1973).

    CAS  Google Scholar 

  23. K. Kurumada, T. Kitamura, N. Fukumoto, M. Oshima, M. Tanigaki, and S. Kanazawa, J. Membr. Sci., 149, 51 (1998).

    Article  CAS  Google Scholar 

  24. N. Betz, A. L. Moel, E. Balanzat, J. M. Ramillon, J. Lamotte, J. P. Gallas, and G. A. Jaskierowicz, J. Polym. Sci., Part B: Polym. Phys., 32, 1493 (1994).

    Article  CAS  Google Scholar 

  25. B. Mohajir and N. Heymans, Polym. Sci., 42, 5661 (2001).

    Google Scholar 

  26. A. Pawlak, Polymer, 48, 1397 (2007).

  27. R. Gregorio, Jr. and M. Cestari, J. Polym. Sci., Part B: Polym. Phys., 32, 859 (1994).

    Article  CAS  Google Scholar 

  28. Y. Yang, H. Zhang, P Wang, Q. Zheng, and J. Li, J. Membr. Sci., 288, 231 (2007).

    Article  CAS  Google Scholar 

  29. K. Nakagawa and Y. Ishida, J. Polym. Sci., Polym. Phys., 11, 1503 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Taek Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, T.H., Jee, K.Y. & Lee, Y.T. The improvement of water flux and mechanical strength of PVDF hollow fiber membranes by stretching and annealing conditions. Macromol. Res. 23, 592–600 (2015). https://doi.org/10.1007/s13233-015-3087-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3087-0

Keywords

Navigation