Skip to main content
Log in

Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Herein, we report the synthesis of a high performance electromagnetic interference shielding (EMI) composite by utilizing polyethersulfone (PES) as a model matrix. Thin films of PES filled with conductive multi-walled carbon nanotubes (MWCNTs) were fabricated by a simple solution casting technique. The effect of filler concentration on EMI shielding efficiency, dielectric constant, electrical conductivity, hardness and thermal stability were investigated, and these properties were found to improve with the filler amount. An exceptionally high EMI shielding effectiveness of 35 dB (well above the common commercial EMI shielding requirement of 20 dB) was obtained in the X-band at a low thickness of 0.5 mm. Furthermore, the PES based CNT composites displayed a high electrical conductivity of 450 S/m. A high dielectric constant of 127 was obtained for a 20 wt% CNT filled polymer composite which was 40 times larger than the pure polymer matrix. Characterization tools indicate the intimate contact between the host matrix (PES) and CNT filler, which provided synergistic effects for improving dielectric properties as well as EMI shielding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Shahzad, P. Kumar, Y.-H. Kim, S. M. Hong, and C. M. Koo, ACS Appl. Mater. Interfaces, 8, 9361 (2016).

    Article  CAS  Google Scholar 

  2. D. H. Park, Y. K. Lee, S. S. Park, C. S. Lee, S. H. Kim, and W. N. Kim, Macromol. Res., 21, 905 (2013).

    Article  CAS  Google Scholar 

  3. S. Geetha, K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, J. Appl. Polym. Sci., 112, 2073 (2009).

    Article  CAS  Google Scholar 

  4. J.-M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, and C. Detrembleur, Mater. Sci. Eng. R: Reports, 74, 211 (2013).

    Article  Google Scholar 

  5. A. R. A. Schettini, D. Khastgir, and B. G. Soares, Polym. Eng. Sci., 52, 2041 (2012).

    Article  CAS  Google Scholar 

  6. J. Arranz-Andrés, E. Pérez, and M. L. Cerrada, Eur. Polym. J., 48, 1160 (2012).

    Article  Google Scholar 

  7. M. H. Al-Saleh, W. H. Saadeh, and U. Sundararaj, Carbon, 60, 146 (2013).

    Article  CAS  Google Scholar 

  8. S. Varshney, A. Ohlan, V. K. Jain, V. P. Dutta, and S. K. Dhawan, Ind. Eng. Chem. Res., 53, 14282 (2014).

    Article  CAS  Google Scholar 

  9. K. V. Kannan, N. Selvakumar, and K. Jeyasubramanian, Quantum Matter, 5, 26 (2016).

    Article  Google Scholar 

  10. N. Joseph and M. T. Sebastian, Mater. Lett., 90, 64 (2013).

    Article  CAS  Google Scholar 

  11. V. Eswaraiah, V. Sankaranarayanan, and S. Ramaprabhu, Nanoscale Res. Lett., 6, 137 (2011).

    Article  Google Scholar 

  12. M. H. Al-Saleh and U. Sundararaj, Macromol. Mater. Eng., 293, 621 (2008).

    Article  CAS  Google Scholar 

  13. X. Luo and D. Chung, Compos. Part B: Eng., 30, 227 (1999).

    Article  Google Scholar 

  14. V. K. Sachdev, S. Bhattacharya, K. Patel, S. K. Sharma, N. C. Mehra and R. P. Tandon, J. Appl. Polym. Sci., 131, n/a (2014).

    Google Scholar 

  15. S. Maiti, N. K. Shrivastava, S. Suin, and B. Khatua, ACS Appl. Mater. Interfaces, 5, 4712 (2013).

  16. S. Kashi, R. K. Gupta, T. Baum, N. Kao, and S. N. Bhattacharya, Mater. Des., 95, 119 (2016).

    CAS  Google Scholar 

  17. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010).

    Article  CAS  Google Scholar 

  18. M. S. Han, Y. K. Lee, W. N. Kim, H. S. Lee, J. S. Joo, M. Park, H. J. Lee, and C. R. Park, Macromol. Res., 17, 863 (2009).

    Article  CAS  Google Scholar 

  19. N. C. Das, Y. Liu, K. Yang, W. Peng, S. Maiti, and H. Wang, Polym. Eng. Sci., 49, 1627 (2009).

    Article  CAS  Google Scholar 

  20. I. S. Han, Y. K. Lee, H. S. Lee, H. G. Yoon, and W. N. Kim, J. Mater. Sci., 49, 4522 (2014).

    Article  CAS  Google Scholar 

  21. J.-M. Thomassin, C. Pagnoulle, L. Bednarz, I. Huynen, R. Jerome, and C. Detrembleur, J. Mater. Chem., 18, 792 (2008).

    Article  CAS  Google Scholar 

  22. M. Arjmand, M. Mahmoodi, G. A. Gelves, S. Park, and U. Sundararaj, Carbon, 49, 3430 (2011).

    Article  CAS  Google Scholar 

  23. Z. Liu, G. Bai, Y. Huang, Y. Ma, F. Du, F. Li, T. Guo, and Y. Chen, Carbon, 45, 821 (2007).

    Article  CAS  Google Scholar 

  24. Y. Huang, N. Li, Y. Ma, F. Du, F. Li, X. He, X. Lin, H. Gao, and Y. Chen, Carbon, 45, 1614 (2007).

    Article  CAS  Google Scholar 

  25. H. Kim, K. Kim, C. Lee, J. Joo, S. Cho, H. Yoon, D. Pejakovic, J.-W. Yoo, and A. Epstein, Appl. Phys. Lett., 84, 589 (2004).

    Article  CAS  Google Scholar 

  26. S. P. Pawar, K. Pattabhi, and S. Bose, RSC Adv., 4, 18842 (2014).

    Article  CAS  Google Scholar 

  27. S.-E. Lee, M. Y. Lee, M.-K. Lee, E. Jeong, and Y.-S. Lee, Appl. Surf. Sci., 369, 189 (2016).

    Article  CAS  Google Scholar 

  28. R. J. Gohari, E. Halakoo, W. J. Lau, M. A. Kassim, T. Matsuura, and A. F. Ismail, RSC Adv., 4, 17587 (2014).

    Article  Google Scholar 

  29. V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, and B. Astinchap, Sep. Purif. Technol., 90, 69 (2012).

    Article  CAS  Google Scholar 

  30. P. Puech, E. Flahaut, A. Bassil, T. Juffmann, F. Beuneu, and W. S. Bacsa, J. Raman Spectrosc., 38, 714 (2007).

    Article  CAS  Google Scholar 

  31. S. Sánchez, M. Pumera, E. Fàbregas, J. Bartrolí, and M. J. Esplandiu, Phys. Chem. Chem. Phys., 11, 7721 (2009).

    Article  Google Scholar 

  32. F. Shahzad, S. Yu, P. Kumar, J.-W. Lee, Y.-H. Kim, S. M. Hong, and C. M. Koo, Compos. Struct., 133, 1267 (2015).

    Article  Google Scholar 

  33. T. K. Gupta, B. P. Singh, S. R. Dhakate, V. N. Singh, and R. B. Mathur, J. Mater. Chem. A, 1, 9138 (2013).

    Article  CAS  Google Scholar 

  34. S. R. Dhakate, K. M. Subhedar, and B. P. Singh, RSC Adv., 5, 43036 (2015).

    Article  CAS  Google Scholar 

  35. Z. Chen, C. Xu, C. Ma, W. Ren, and H. M. Cheng, Adv. Mater., 25, 1296 (2013).

    Article  CAS  Google Scholar 

  36. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P. C. Eklund, Nano Lett., 6, 1141 (2006).

    Article  CAS  Google Scholar 

  37. M. H. Al-Saleh and U. Sundararaj, Carbon, 47, 1738 (2009).

    Article  CAS  Google Scholar 

  38. W. B. Weir, Proceedings of the IEEE, 62, 33 (1974).

    Article  Google Scholar 

  39. A. Nicolson and G. Ross, IEEE Trans. Instrum. Meas., 19, 377 (1970).

    Article  Google Scholar 

  40. F. He, S. Lau, H. L. Chan, and J. Fan, Adv. Mater., 21, 710 (2009).

    Article  CAS  Google Scholar 

  41. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang, Appl. Phys. Lett., 98, 072906 (2011).

    Article  Google Scholar 

  42. A. P. Singh, M. Mishra, P. Sambyal, B. K. Gupta, B. P. Singh, A. Chandra, and S. K. Dhawan, J. Mater. Chem. A, 2, 3581 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee Taik Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, N., Kim, H.T. Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness. Macromol. Res. 24, 1084–1090 (2016). https://doi.org/10.1007/s13233-016-4152-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4152-z

Keywords

Navigation