Skip to main content
Log in

Evolutionary Stability of Polymorphic Population States in Continuous Games

  • Published:
Dynamic Games and Applications Aims and scope Submit manuscript

Abstract

Asymptotic stability of equilibrium in evolutionary games with continuous action spaces is an important question. Existing results in the literature require that the equilibrium state be monomorphic. In this article, we address this question when the equilibrium is polymorphic. We show that any uninvadable and finitely supported state is asymptotically stable equilibrium of replicator equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archetti M, Scheuring I (2012) Review: Game theory of public goods in one-shot social dilemmas without assortment. J Ther Biol 299:9–20. doi:10.1016/j.jtbi.2011.06.018

    Article  MathSciNet  MATH  Google Scholar 

  2. Billingsley P (1999) Convergence of probability measures. Wiley series in probability and statistics. A Wiley-interscience, vol 2. Wiley, New York. doi:10.1002/9780470316962

    Google Scholar 

  3. Bomze IM (1990) Dynamical aspects of evolutionary stability. Monatsh Math 110(3–4):189–206. doi:10.1007/BF01301675

    Article  MathSciNet  MATH  Google Scholar 

  4. Bomze IM (1991) Cross entropy minimization in uninvadable states of complex populations. J Math Biol 30(1):73–87. doi:10.1007/BF00168008

    Article  MathSciNet  MATH  Google Scholar 

  5. Bomze IM, Pötscher BM (1989) Game theoretical foundations of evolutionary stability, Lecture Notes in Economics and Mathematical Systems, vol 324. Springer, Berlin

    Book  MATH  Google Scholar 

  6. Bomze IM, Weibull JW (1995) Does neutral stability imply Lyapunov stability? Games Econ Behav 11(2):173–192. doi:10.1006/game.1995.1048 Evolutionary game theory in biology and economics

    Article  MathSciNet  MATH  Google Scholar 

  7. Broom M, Luther RM, Ruxton GD (2008) A game-theoretic model of kleptoparasitic behavior in polymorphic populations. J Ther Biol 255:81–91. doi:10.1016/j.jtbi.2008.08.001

    Article  MathSciNet  Google Scholar 

  8. Cheung MW (2014) Pairwise comparison dynamics for games with continuous strategy space. J Econ Theory 153(153):344–375. doi:10.1016/j.jet.2014.07.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Cressman R (2003) Evolutionary dynamics and extensive form games, MIT Press series on economic learning and social evolution, vol 5. MIT Press, Cambridge

    Google Scholar 

  10. Cressman R (2005) Stability of the replicator equation with continuous strategy space. Math. Social Sci. 50(2):127–147. doi:10.1016/j.mathsocsci.2005.03.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Cressman R, Hofbauer J (2005) Measure dynamics on a one-dimensional continuous trait space: theoretical foundations for adaptive dynamics. Ther Popul Biol 67:47–59. doi:10.1016/j.tpb.2004.08.001

    Article  MATH  Google Scholar 

  12. Fishman MA (2016) Polymorphic evolutionary games. J Ther Biol 398:130–135. doi:10.1016/j.jtbi.2016.03.012

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman D, Ostrov DN (2013) Evolutionary dynamics over continuous action spaces for population games that arise from symmetric two-player games. J Econom Theory 148(2):743–777. doi:10.1016/j.jet.2012.07.004

    Article  MathSciNet  MATH  Google Scholar 

  14. Hingu D, Rao KM, Shaiju A (2016) Evolutionary stability of dimorphic population states. Ann Int Soc Dyn Games 14:249–266

    MathSciNet  MATH  Google Scholar 

  15. Hofbauer J, Oechssler J, Riedel F (2009) Brown–von Neumann–Nash dynamics: the continuous strategy case. Games Econom Behav 65(2):406–429. doi:10.1016/j.geb.2008.03.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Hofbauer J, Sigmund K (1988) The theory of evolution and dynamical systems, London Mathematical Society Student Texts, vol. 7. Cambridge University Press, Cambridge. Mathematical aspects of selection, Translated from the German

  17. Hofbauer J, Sigmund K (2003) Evolutionary game dynamics. Bull Am Math Soc (N.S.) 40(4):479–519. doi:10.1090/S0273-0979-03-00988-1

    Article  MathSciNet  MATH  Google Scholar 

  18. Lahkar R, Riedel F (2015) The logit dynamic for games with continuous strategy sets. Games Econ Behav 91:268–282. doi:10.1016/j.geb.2015.03.009

    Article  MathSciNet  MATH  Google Scholar 

  19. Maynard Smith J (1974) The theory of games and the evolution of animal conflicts. J Theor Biol 47(1):209–221. doi:10.1016/0022-5193(74)90110-6

    Article  MathSciNet  Google Scholar 

  20. Maynard Smith J (1982) Evolution and the theory of games. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  21. Oechssler J, Riedel F (2001) Evolutionary dynamics on infinite strategy spaces. Econ Theory 17(1):141–162. doi:10.1007/PL00004092

    Article  MathSciNet  MATH  Google Scholar 

  22. Oechssler J, Riedel F (2002) On the dynamic foundation of evolutionary stability in continuous models. J Econ Theory 107(2):223–252. doi:10.1006/jeth.2001.2950

    Article  MathSciNet  MATH  Google Scholar 

  23. Reiss RD (1989) Approximate distributions of order statistics, with applications to nonparametric statistics. Springer series in statistics. Springer, New York. doi:10.1007/978-1-4613-9620-8

  24. Sandholm WH (2010) Population games and evolutionary dynamics. Economic learning and social evolution. MIT Press, Cambridge

    MATH  Google Scholar 

  25. Schulz AW (2010) It takes two: sexual strategies and game theory. Stud Hist Philos Biol Biomed Sci 41:41–49. doi:10.1016/j.shpsc.2009.12.004

    Article  Google Scholar 

  26. van Veelen M, Spreij P (2009) Evolution in games with a continuous action space. Econ Theory 39(3):355–376. doi:10.1007/s00199-008-0338-8

    Article  MathSciNet  MATH  Google Scholar 

  27. Vickers G, Cannings C (1987) On the definition of an evolutionarily stable strategy. J Theor Biol 129(3):349–353. doi:10.1016/S0022-5193(87)80007-3

    Article  MathSciNet  Google Scholar 

  28. Weibull JW (1995) Evolutionary game theory, with a foreword by Ken Binmore. MIT Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharini Hingu.

Additional information

The authors acknowledge the financial support of NBHM through the Project “Evolutionary Stability in Games with Continuous Action Spaces”.

Appendix

Appendix

Here, we establish two abstract stability theorems used to prove our main theorems in Sect. 3. To this end, we consider an abstract differential equation

$$\begin{aligned} \phi '(t) = H(\phi (t)) \end{aligned}$$
(17)

on a Banach space \((X,\Vert \cdot \Vert _X)\). It is assumed that for each initial condition \(\phi _0\) in an invariant set \(Y \subset X\), the differential equation (17) has a unique solution \(\phi (t) = \phi (t;\phi _0)\) defined for every \(t \ge 0\). We want to analyse this system around a rest point \(\phi ^* \in Y\). We recall the definition of \(\mathscr {K}_0^\infty \) functions:

$$\begin{aligned} \mathscr {K}_0^\infty&= \{\omega : [0,\infty ) \rightarrow [0,\infty ) ~\mid ~\omega \text{ is } \text{ strictly } \text{ increasing, } \text{ continuous, } \\&~~~~~~~~~~~~~\omega (0) = 0 \text{ and } \lim _{s \rightarrow \infty } \omega (s) = \infty \}. \end{aligned}$$

Theorem 8

Let \(\Omega \) be an open subset of Y containing the rest point \(\phi ^*\) of (17). Assume that \(V : \Omega \rightarrow \mathbb {R}\) is continuous at \(\phi ^*\) and satisfies

  1. (i)

    \(V(\phi ) \ge 0\) on \(\Omega \) and \(V(\phi ^*) = 0\);

  2. (ii)

    there exists \(\omega \in \mathscr {K}_0^\infty \) such that \(\omega (\Vert \phi - \phi ^*\Vert _X) \le V(\phi )\) for all \(\phi \in \Omega \);

  3. (iii)

    V is non-increasing along trajectories of (17) that lie in \(\Omega \).

Then, \(\phi ^*\) is Lyapunov stable.

Proof

Let \(B(\phi ^*,\epsilon )\) be the open ball around \(\phi ^*\) with radius \(\epsilon \). Let \(\epsilon > 0\) be small enough such that the closure of \(B(\phi ^*,\epsilon )\) is contained in \(\Omega \).

By continuity of V at \(\phi ^*\) and condition (i), there exists \(\delta > 0\) such that \(V(\phi ) < \omega (\epsilon )\) whenever \(\phi \in B(\phi ^*,\delta )\).

Clearly, by condition (iii), the set \(U = \{ \phi \in \Omega ~|~ V(\phi ) < \omega (\epsilon ) \}\) is invariant. Without loss of generality we can assume that closure of U is a subset of \(\Omega \). Therefore, for every \(\phi _0 \in B(\phi ^*,\delta )\), the trajectory \(\phi (t) = \phi (t;\phi _0)\) lies in U and hence,

$$\begin{aligned} \omega \left( \Vert \phi (t) - \phi ^*\Vert _X \right) \le V(\phi (t)) < \omega (\epsilon ). \end{aligned}$$

As \(\omega \in \mathscr {K}_0^\infty \), it is invertible and from above it follows that

$$\begin{aligned} \Vert \phi (t) - \phi ^*\Vert _X < \epsilon . \end{aligned}$$

Hence, the trajectory \(\phi (t)\) lies in \(B(\phi ^*,\epsilon )\) whenever \(\phi _0 \in B(\phi ^*,\delta )\). \(\square \)

Theorem 9

Let \(\Omega \) be an open subset of Y containing the rest point \(\phi ^*\) of (17). Assume that \(V : \Omega \rightarrow \mathbb {R}\) is continuous on \(\Omega \) and satisfies

  1. (i)

    \(V(\phi ) \ge 0\) on \(\Omega \) and \(V(\phi ^*) = 0\);

  2. (ii)

    there exists \(\omega \in \mathscr {K}_0^\infty \) such that \(\omega (\Vert \phi - \phi ^*\Vert _X) \le V(\phi )\) for all \(\phi \in \Omega \);

  3. (iii)

    V is strictly decreasing along trajectories of (17) that lie in \(\Omega {\setminus } \{\phi ^*\}\);

  4. (iv)

    there exists \(\delta _1 > 0\) such that for every trajectory \(\phi (t)\) emanating from \(B(\phi ^*,\delta _1)\), there exists a sequence \(t_n \rightarrow \infty \) such that \(V(\phi (t_n))\) converges to \(V(\psi )\) for some \(\psi \in \Omega \) and

    $$\begin{aligned} \lim _{s \downarrow 0 ,~ n \uparrow \infty } |V(\phi (s;\psi )) - V(\phi (s,\phi (t_n)))| = 0. \end{aligned}$$

Then, \(\phi ^*\) is asymptotically stable.

Proof

As the Lyapunov stability follows from the above theorem, it remains to show that \(\phi ^*\) is attracting.

Let \(B(\phi ^*,\delta )\) and \(B(\phi ^*,\epsilon )\) be as defined in the proof of the above theorem. Without loss of generality, we may assume that \(\delta \le \epsilon \). Similarly, there exists \(\delta _2 > 0\) such that all trajectories emanating from \(B(\phi ^*,\delta _2)\) lie in \(B(\phi ^*,\frac{\delta }{2})\).

Let \(\bar{\delta } = \min \{\delta _1,\delta _2\}\) and \(\phi (t) = \phi (t;\phi _0)\) be the trajectory of the differential Eq. (17) with the initial condition \(\phi _0 \in B(\phi ^*,\bar{\delta })\). Then, by condition (iv), there exists a sequence \(t_n \rightarrow \infty \) such that \(V(\phi (t_n))\) converges to \(V(\psi )\) for some \(\psi \in \Omega \).

We need to show that \(\psi = \phi ^*\). By condition (iii), \(V(\phi (t)) > V(\psi )\) for every \(t \ge 0\). If \(\psi \not = \phi ^*\), let \(\psi (t) = \phi (t;\psi )\). For any \(t > 0\), \(V(\psi (t)) < V(\psi )\). By condition (iv),

$$\begin{aligned} \lim _{s \downarrow 0 ,~ n \uparrow \infty } |V(\phi (s;\psi )) - V(\phi (s,\phi (t_n)))| = 0. \end{aligned}$$

and hence

$$\begin{aligned} V(\phi (s,\phi (t_n))) < V(\psi ) \end{aligned}$$

for \(s > 0\) small enough and n large enough which is a contradiction because \(\phi (s,\phi (t_n)) = \phi (s+t_n;\phi _0)\). Hence, \(\psi = \phi ^*\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hingu, D., Mallikarjuna Rao, K.S. & Shaiju, A.J. Evolutionary Stability of Polymorphic Population States in Continuous Games. Dyn Games Appl 8, 141–156 (2018). https://doi.org/10.1007/s13235-016-0207-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13235-016-0207-1

Keywords

Navigation