Skip to main content
Log in

Radiofrequency Ablation Directionally Alters Geometry and Biomechanical Compliance of Mitral Valve Leaflets: Refinement of a Novel Percutaneous Treatment Strategy

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Myxomatous mitral valve disease is a form of mitral valve prolapse, which is characterized by a disorganized collagen matrix with excessive glycosaminoglycan content. Due to loss of mechanical competence and increased surface area of the mitral valve leaflets, this disease leads to regurgitation and cardiac dysfunction. There is a strong clinical need for percutaneous treatment of patients with myxomatous mitral valve disease and regurgitation as an alternative to open-chest surgery. We have previously examined the efficacy of radiofrequency ablation of the mitral valve leaflets as a strategy to reduce prolapse and regurgitation in a canine model. Prior to testing this strategy further in a large animal model, we sought to determine the ‘therapeutic window’ that should be targeted in vitro. Here, we quantified both the geometrical and biomechanical compliance changes of porcine mitral valve anterior leaflets before and after radiofrequency ablation at various powers (Watts) for 15 s. Following ablation, there was significant shortening in the circumferential direction after 15 and 25 W, which led to significant decreases in surface area at these powers. Under an equibiaxial membrane tension of 90 N/m, which approximates systolic loading of 120 mmHg, axial strain in the radial direction was predominantly affected following ablation with significant decreases following 10, 15, and 25 W. Circumferential strain was not different following any ablation power, except 25 W when it was significantly increased. Areal strain at 90 N/m was significantly decreased following 10 and 15 W ablations, but was increased following 25 W. These data indicate that radiofrequency ablation decreases mitral valve leaflet surface area and compliance, but only achieving both within a narrow therapeutic window. To maximize both of these effects, 15 W appears to be the target power. While 25 W leads to ~25% reduction in tissue area, it results in increased compliance. We speculate that at this power, collagen fibers may be failing due to rupture, either directly from ablation or once they are mechanically loaded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aldous, I. G., S. P. Veres, A. Jahangir, and J. M. Lee. Differences in collagen cross-linking between the four valves of the bovine heart: a possible role in adaptation to mechanical fatigue. Am. J. Physiol. Heart Circ. Physiol. 296(6):H1898–H1906, 2009.

    Article  Google Scholar 

  2. Alfieri, O., M. De Bonis, E. Lapenna, T. Regesta, F. Maisano, L. Torracca, et al. “Edge-to-edge” repair for anterior mitral leaflet prolapse. Semin. Thorac. Cardiovasc. Surg. 16(2):182–187, 2004.

    Article  Google Scholar 

  3. Alfieri, O., F. Maisano, and A. Colombo. Future of transcatheter repair of the mitral valve. Am. J. Cardiol. 96(12A):71L–75L, 2005.

    Google Scholar 

  4. Bhudia, S. K., P. M. McCarthy, N. G. Smedira, B. K. Lam, J. Rajeswaran, and E. H. Blackstone. Edge-to-edge (Alfieri) mitral repair: results in diverse clinical settings. Ann. Thorac. Surg. 77(5):1598–1606, 2004.

    Article  Google Scholar 

  5. Brinster, D. R., D. Unic, M. N. D’Ambra, N. Nathan, and L. H. Cohn. Midterm results of the edge-to-edge technique for complex mitral valve repair. Ann. Thorac. Surg. 81(5):1612–1617, 2006.

    Article  Google Scholar 

  6. Croft, L. R., J. H. Jimenez, R. C. Gorman, J. H. Gorman, III, and A. P. Yoganathan. Efficacy of the edge-to-edge repair in the setting of a dilated ventricle: an in vitro study. Ann. Thorac. Surg. 84(5):1578–1584, 2007.

    Article  Google Scholar 

  7. Devereux, R. B., R. Kramer-Fox, and P. Kligfield. Mitral valve prolapse: causes, clinical manifestations, and management. Ann. Intern. Med. 111(4):305–317, 1989.

    Google Scholar 

  8. Devereux, R. B., R. Kramer-Fox, M. K. Shear, P. Kligfield, R. Pini, and D. D. Savage. Diagnosis and classification of severity of mitral valve prolapse: methodologic, biologic, and prognostic considerations. Am. Heart J. 113(5):1265–1280, 1987.

    Article  Google Scholar 

  9. Devereux, R. B., R. Kramer-Fox, K. H. Webb, C. Hochreiter, and J. S. Borer. Long-term follow-up of patients with mitral-valve prolapse. N. Engl. J. Med. 314(17):1119–1120, 1986.

    Article  Google Scholar 

  10. Fedak, P. W., P. M. McCarthy, and R. O. Bonow. Evolving concepts and technologies in mitral valve repair. Circulation 117(7):963–974, 2008.

    Article  Google Scholar 

  11. Freed, L. A., E. J. Benjamin, D. Levy, M. G. Larson, J. C. Evans, D. L. Fuller, et al. Mitral valve prolapse in the general population: the benign nature of echocardiographic features in the Framingham Heart Study. J. Am. Coll. Cardiol. 40(7):1298–1304, 2002.

    Article  Google Scholar 

  12. Freed, L. A., D. Levy, R. A. Levine, M. G. Larson, J. C. Evans, D. L. Fuller, et al. Prevalence and clinical outcome of mitral-valve prolapse. N. Engl. J. Med. 341(1):1–7, 1999.

    Article  Google Scholar 

  13. Gagna, C., D. Meier, G. Ru, A. Pospischil, and F. Guarda. Pathology of mitral valve in regularly slaughtered pigs: an abattoir survey on the occurrence of myxoid degeneration (endocardiosis), fibrosis and valvulitis. Zentralbl. Veterinarmed. A 45(6–7):383–395, 1998.

    Google Scholar 

  14. Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.

    Article  Google Scholar 

  15. Hatayama, K., H. Higuchi, M. Kimura, M. Takeda, H. Ono, H. Watanabe, et al. Histologic changes after meniscal repair using radiofrequency energy in rabbits. Arthroscopy 23(3):299–304, 2007.

    Article  Google Scholar 

  16. Huang, S. K. Radio-frequency catheter ablation of cardiac arrhythmias: appraisal of an evolving therapeutic modality. Am. Heart J. 118(6):1317–1323, 1989.

    Article  Google Scholar 

  17. Jimenez, J. H., J. Forbess, L. R. Croft, L. Small, Z. He, and A. P. Yoganathan. Effects of annular size, transmitral pressure, and mitral flow rate on the edge-to-edge repair: an in vitro study. Ann. Thorac. Surg. 82(4):1362–1368, 2006.

    Article  Google Scholar 

  18. Lopez, M. J., L. A. DeTemple, Y. Lu, and M. D. Markel. The effects of monopolar radiofrequency energy on intact and lacerated ovine menisci. Arthroscopy 17(6):613–619, 2001.

    Article  Google Scholar 

  19. Lopez, M. J., K. Hayashi, G. S. Fanton, G. Thabit, III, and M. D. Markel. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen. Arthroscopy 14(5):495–501, 1998.

    Article  Google Scholar 

  20. Ma, H. L., W. J. Jiae, C. H. Huang, S. T. Wang, T. H. Chen, C. K. Cheng, et al. Thermal effects after anterior cruciate ligament shrinkage using radiofrequency technology: a porcine cadaver study. Knee Surg. Sports Traumatol. Arthrosc. 13(8):619–624, 2005.

    Article  Google Scholar 

  21. Mair, E. A., and R. H. Day. Cautery-assisted palatal stiffening operation. Otolaryngol. Head Neck Surg. 122(4):547–556, 2000.

    Article  Google Scholar 

  22. Maisano, F., J. J. Schreuder, M. Oppizzi, B. Fiorani, C. Fino, and O. Alfieri. The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease: surgical technique. Eur. J. Cardiothorac. Surg. 17(3):201–205, 2000.

    Article  Google Scholar 

  23. Otto, C. M. Valvular Heart Disease (2nd ed.). Philadelphia: Saunders, 2004.

    Google Scholar 

  24. Piazza, N., A. Asgar, R. Ibrahim, and R. Bonan. Transcatheter mitral and pulmonary valve therapy. J. Am. Coll. Cardiol. 53(20):1837–1851, 2009.

    Article  Google Scholar 

  25. Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104(21):2525–2532, 2001.

    Article  Google Scholar 

  26. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, et al. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Article  Google Scholar 

  27. Victal, O. A., J. R. Teerlink, E. Gaxiola, A. W. Wallace, S. Najar, D. H. Camacho, et al. Left ventricular volume reduction by radiofrequency heating of chronic myocardial infarction in patients with congestive heart failure. Circulation 105(11):1317–1322, 2002.

    Article  Google Scholar 

  28. Williams, J. L., Y. Toyoda, T. Ota, D. Gutkin, W. Katz, M. Zenati, et al. Feasibility of myxomatous mitral valve repair using direct leaflet and chordal radiofrequency ablation. J. Interv. Cardiol. 21(6):547–554, 2008. PMCID: 2602795.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a Wallace H. Coulter Foundation Translational Research Award to WDM. CGN was supported by the NSF REU—Experimental and Computational Materials Research at University of Alabama at Birmingham.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. David Merryman.

Additional information

Associate Editor John Timothy Baldwin oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Price, S.L., Norwood, C.G., Williams, J.L. et al. Radiofrequency Ablation Directionally Alters Geometry and Biomechanical Compliance of Mitral Valve Leaflets: Refinement of a Novel Percutaneous Treatment Strategy. Cardiovasc Eng Tech 1, 194–201 (2010). https://doi.org/10.1007/s13239-010-0018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-010-0018-2

Keywords

Navigation