Skip to main content
Log in

Effects of Leaflet Stiffness on In Vitro Dynamic Bioprosthetic Heart Valve Leaflet Shape

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Advances in the development of replacement heart valves require a deeper understanding of the valve dynamics. In the present study, dynamic aortic valve (AV) leaflet geometries were quantified in vitro using a structured laser-light imaging system (Iyengar et al., ABME 29(11):963–973, 2001). Native AV leaflets were first imaged under simulated physiological flow conditions within a rigid glass conduit with simulated anatomic sinuses. Next, the valve/glass conduit combination was removed from the loop and immersed in a 0.625% aqueous glutaraldehyde solution at room temperature for 24 h to produce a bioprosthetic heart valve (BHV). The BHV leaflets were then re-imaged under identical flow conditions while kept in the same position in the glass conduit to minimize artifacts associated with removal/reinsertion of the valve. We observed that: (1) the native leaflet exhibited small, high frequency shifts in shape; (2) the BHV leaflet demonstrated a more stabile shape, as well as focal regions of prolonged, high curvature; (3) the BHV leaflet opened and closed faster by ~10 ms compared to native leaflet; (4) in both the BHV and native states, the AV opened from basal region leading to free edge (5) when closing, both the native and BHV close with both free edge and circumferential together. The high bending observed in the BHV leaflet correlated with known locations of tissue deterioration previously reported in our laboratory. Thus, in order to minimize leaflet tissue damage, methods of chemical modification utilized in BHVs that maintain leaflet flexibility are necessary to minimize the onset and progression of tissue damage. We conclude that leaflet stiffness can have a considerable effect on dynamic valve motion, and can induce deleterious bending behaviors that may be associated with tissue breakdown and valve failure. Moreover, these unique data can provide much needed quantitative information for computational simulation of heart valve leaflet stiffness on heart valve function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Adamczyk, M. M., T. C. Lee, and I. Vesely. Biaxial strain properties of elastase-digested porcine aortic valves. J. Heart Valve Dis. 9(3):445–453, 2000.

    Google Scholar 

  2. Amini, R., C. E. Eckert, K. Koomalsingh, J. McGarvey, M. Minakawa, J. H. Gorman, et al. On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann. Biomed. Eng. 2012; Epub 2012/02/14.

  3. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp—part I: experimental results. J. Biomech. Eng. 122(1):23–30, 2000.

    Article  Google Scholar 

  4. Black, M. M., I. C. Howard, X. C. Huang, and E. A. Patterson. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24:793–801, 1991.

    Article  Google Scholar 

  5. Chandran, K. B., S. H. Kim, and G. Han. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J. Biomech. 24:385–395, 1991.

    Article  Google Scholar 

  6. Connolly, J. M., I. Alferiev, J. N. Clark-Gruel, N. Eidelman, M. Sacks, E. Palmatory, et al. Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance: chemical and biological mechanisms. Am. J. Pathol. 166(1):1–13, 2005.

    Article  Google Scholar 

  7. Deiwick, M., B. Glasmacher, D. T. Tjan, H. Reul, G. von Bally, and H. H. Scheld. Holographic interferometry and in vitro calcification: comparing pericardial versus porcine bioprostheses. J. Heart Valve Dis. 7(4):419–427, 1998.

    Google Scholar 

  8. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. Gorman, 3rd, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37(9):1757–1771, 2009; Epub 2009/07/09.

    Google Scholar 

  9. Ferrans, V., T. Spray, M. Billingham, and W. Roberts. Structural changes in glutaraldehyde-treated porcine heterografts used as substitute cardiac valves. Am. J. Cardiol. 41:1159–1184, 1978.

    Article  Google Scholar 

  10. Gloeckner, D. C., K. L. Billiar, and M. S. Sacks. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve. ASAIO J. 45(1):59–63, 1999.

    Article  Google Scholar 

  11. Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19:759–769, 1986.

    Article  Google Scholar 

  12. Istkov, M. Tensor Algebra and Tensor Analysis for Engineers. Berlin: Springer, 2007.

    Google Scholar 

  13. Iyengar, A. K. S., H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29(11):963–973, 2001.

    Article  Google Scholar 

  14. Krucinski, S., I. Vesely, M. A. Dokainish, and G. Campbell. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26:929–943, 1993.

    Article  Google Scholar 

  15. Lovekamp, J. J., D. T. Simionescu, J. J. Mercuri, B. Zubiate, M. S. Sacks, and N. R. Vyavahare. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 27(8):1507–1518, 2006.

    Article  Google Scholar 

  16. Lovekamp, J., and N. Vyavahare. Periodate-mediated glycosaminoglycan stabilization in bioprosthetic heart valves. J. Biomed. Mater. Res. 56(4):478–486, 2001.

    Article  Google Scholar 

  17. Mirnajafi, A., B. Zubiate, and M. S. Sacks. Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials. J. Biomed Mater. Res. A 94(1):205–213, 2010; Epub 2010/02/19.

    Google Scholar 

  18. Patterson, E. A., I. C. Howard, and M. A. Thornton. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J. Med. Eng. Technol. 20(3):95–108, 1996.

    Article  Google Scholar 

  19. Peskin, C., and D. McQueen. Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol. 266(1):H319, 1994.

    Google Scholar 

  20. Peskin, C. S., and A. W. Wolfe. The aortic sinus vortex. Fed Proc. 37(14):2784–2792, 1978.

    Google Scholar 

  21. Sacks, M. S. The biomechanical effects of fatigue on the porcine bioprosthetic heart valve. J. Long Term Eff. Med. Implants 11(3&4):231–247, 2001.

    Google Scholar 

  22. Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3-D reconstruction and geometric characterization of the right ventricular free wall. Ann. Biomed. Eng. 21:263–275, 1993.

    Article  Google Scholar 

  23. Sacks, M. S., H. Hamamoto, J. M. Connolly, R. C. Gorman, J. H. Gorman, 3rd, and R. J. Levy. In vivo biomechanical assessment of triglycidylamine crosslinked pericardium. Biomaterials 28(35):5390–5398, 2007; Epub 2007/09/08.

    Google Scholar 

  24. Sacks, M. S., Z. He, L. Baijens, S. Wanant, P. Shah, H. Sugimoto, et al. Surface strains in the anterior leaflet of the functioning mitral valve. Ann. Biomed. Eng. 30(10):1281–1290, 2002.

    Article  Google Scholar 

  25. Sacks, M. S., A. Mirnajafi, W. Sun, and P. Schmidt. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Rev. Med. Devices 3(6):817–834, 2006.

    Article  Google Scholar 

  26. Sacks, M. S., and F. J. Schoen (eds.). Calcification-Independent Collagen Damage in Explanted Clinical Bioprosthetic Heart Valves. Providence, RI: Society for Biomaterials, 1999.

    Google Scholar 

  27. Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.

    Article  Google Scholar 

  28. Sacks, M. S., and D. B. Smith. Effects of accelerated testing on porcine bioprosthetic heart valve fiber architecture. Biomaterials 19(11–12):1027–1036, 1998.

    Article  Google Scholar 

  29. Schoen, F. J. Pathology of heart valve substitution with mechanical and tissue prostheses. In: Cardiovascular Pathology, edited by M. D. Silver, A. I. Gotlieb, and F. J. Schoen. New York: Livingstone, 2001.

    Google Scholar 

  30. Schoen, F. J. Cardiac valves and valvular pathology: update on function, disease, repair, and replacement. Cardiovasc. Pathol. 14(4):189–194, 2005.

    Article  Google Scholar 

  31. Schoen, F. J., and R. J. Levy. Calcification of bioprosthetic heart valves. In: Replacement Cardiac Valves, edited by E. Bodnar, and R. W. M. Frater. New York: Pergamon Press, 1991, pp. 125–148.

    Google Scholar 

  32. Schoen, F., and R. Levy. Pathology of substitute heart valves. J. Card. Surg. 9:222–227, 1994.

    Article  Google Scholar 

  33. Schoen, F., and R. Levy. Tissue heart valves: current challenges and future research perspectives. J. Biomed. Mater. Res. 47:439–465, 1999.

    Article  Google Scholar 

  34. Shimada, K., A. Yamada, and T. Itoh (eds.). Anisotropic triangular meshing of parametric surfaces via close packing of ellipsoidal bubbles. In: Sixth international meshing roundtable. Sandia National Laboratories, 1997.

  35. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. J. Heart Valve Dis. 6(4):424–432, 1997.

    Google Scholar 

  36. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J. Heart Valve Dis. 8(1):25–33, 1999.

    Google Scholar 

  37. Smith, D. B., M. S. Sacks, D. A. Vorp, and M. Thornton. Surface geometric analysis of anatomic structures using biquintic finite element interpolation. Ann. Biomed. Eng. 28(6):598–611, 2000.

    Article  Google Scholar 

  38. Vyavahare, N., M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. S. Sacks, et al. Mechanisms of bioprosthetic heart valve failure: fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46:44–50, 1999.

    Article  Google Scholar 

  39. Weiler, M., C. H. Yap, K. Balachandran, M. Padala, and A. P. Yoganathan. Regional analysis of dynamic deformation characteristics of native aortic valve leaflets. J. Biomech. 44(8):1459–1465, 2011; Epub 2011/04/05.

    Google Scholar 

  40. Wells, S. M., T. Sellaro, and M. S. Sacks. Cyclic loading response of bioprosthetic heart valves: effects of fixation stress state on the collagen fiber architecture. Biomaterials 26(15):2611–2619, 2005.

    Article  Google Scholar 

  41. Wipperman, F. On the fluid dynamics of the aortic valve. J. Fluid Mech. 159:487–501, 1985.

    Article  MathSciNet  Google Scholar 

  42. Yap, C. H., H. S. Kim, K. Balachandran, M. Weiler, R. Haj-Ali, and A. P. Yoganathan. Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am. J. Physiol. Heart Circ. Physiol. 298(2):H395–H405, 2010; Epub 2009/11/17.

    Google Scholar 

Download references

Acknowledgments

This research was supported by NIH grants HL-063026, HL-070969, and HL-108330.

Conflict of interest

The authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sacks.

Additional information

Associate Editor Jay Humphrey oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, H., Sacks, M.S. Effects of Leaflet Stiffness on In Vitro Dynamic Bioprosthetic Heart Valve Leaflet Shape. Cardiovasc Eng Tech 4, 2–15 (2013). https://doi.org/10.1007/s13239-013-0117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-013-0117-y

Keywords

Navigation