Skip to main content
Log in

On-X Heart Valve Prosthesis: Numerical Simulation of Hemodynamic Performance in Accelerating Systole

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Numerical simulation of the bileaflet mechanical heart valves (BMHVs) has been of interest for many researchers due to its capability of predicting hemodynamic performance. A lot of studies have tried to simulate this three-dimensional complex flow in order to analyze the effect of different valve designs on the blood flow pattern. However, simplified models and prescribed motion for the leaflets were utilized. In this paper, transient complex blood flow in the location of ascending aorta has been investigated in a realistic model by fully coupled simulation. Geometry model for the aorta and the replaced valve is constructed based on the medical images and extracted point clouds. A 23-mm On-X Medical BMHV as the new generation design has been selected for the flow field analysis. The two-way coupling simulation is conducted throughout the accelerating phase in order to obtain valve dynamics in the opening process. The complex flow field in the hinge recess is captured precisely for all leaflet positions and recirculating zones and elevated shear stress areas have been observed. Results indicate that On-X valve yields relatively less transvalvular pressure gradient which would lower cardiac external work. Furthermore, converging inlet leads to a more uniform flow and consequently less turbulent eddies. However, the leaflets cannot open fully due to middle diffuser-shaped orifice. In addition, asymmetric butterfly-shaped hinge design and converging orifice leads to better hemodynamic performance. With the help of two-way fluid solid interaction simulation, leaflet angle follows the experimental trends more precisely rather than the prescribed motion in previous 3D simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20

Similar content being viewed by others

References

  1. Akutsu, T., and D. Higuchi. Effect of the mechanical prosthetic mono- and bileaflet heart valve orientation on the flow field inside the simulated ventricle. J. Artif. Organs 3(2):126–135, 2000.

    Article  Google Scholar 

  2. Akutsu, T., and D. Higuchi. Flow analysis of the bileaflet mechanical prosthetic heart valves using laser Doppler anemometer: effect of the valve designs and installed orientations to the flow inside the simulated left ventricle. J. Artif. Organs 4:113–125, 2001.

    Article  Google Scholar 

  3. Akutsu, T., and T. Masuda. Three-dimensional flow analysis of a mechanical bileaflet mitral prosthesis. J. Artif. Organs 6(2):112–123, 2003.

    Google Scholar 

  4. Akutsu, T., and A. Matsumoto. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta. J. Artif. Organs 13(4):207–217, 2010.

    Article  Google Scholar 

  5. Akutsu, T., J. Saito, R. Imai, T. Suzuki, and X. D. Cao. Dynamic particle image velocimetry study of the aortic flow field of contemporary mechanical bileaflet prostheses. J. Artif. Organs 11(2):75–90, 2008.

    Article  Google Scholar 

  6. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007.

    Article  Google Scholar 

  7. Bang, J. S., S. M. Yoo, and C. N. Kim. Characteristics of pulsatile blood flow through the curved bileaflet mechanical heart valve installed in two different types of blood vessels: velocity and pressure of blood flow. ASAIO J. 52(3):234–242, 2006.

    Article  Google Scholar 

  8. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35(12):1533–1540, 2002.

    Article  Google Scholar 

  9. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomech. Eng. 122(2):125–134, 2000.

    Article  Google Scholar 

  10. Böhlke, T., K. Jöchen, R. Piat, T.-A. Langhoff, I. Tsukrov, and B. Reznik. Elastic properties of pyrolytic carbon with axisymmetric textures. Technische Mechanik 30:343–353, 2010.

    Google Scholar 

  11. Chambers, J. B., J. L. Pomar, C. A. Mestres, and G. M. Palatianos. Clinical event rates with the On-X bileaflet mechanical heart valve: a multicenter experience with follow-up to 12 years. J. Thorac. Cardiovasc. Surg. 145(2):420–424, 2013.

    Article  Google Scholar 

  12. Chandran, K. B. Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovasc. Eng. Technol. 1(1):18–38, 2010.

    Article  Google Scholar 

  13. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1471–1483, 2004.

    Article  Google Scholar 

  14. Dasi, L. P., L. Ge, A. H. Simon, F. Sotiropoulos, and P. A. Yoganathan. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys. Fluids 19(6):1–17, 2007.

    Article  MATH  Google Scholar 

  15. Del Alamo, J. C., A. L. Marsden, and J. C. Lasheras. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease. Revista española de cardiología 62(Vii):781–805, 2009.

    Google Scholar 

  16. Dumont, K., J. M. A. Stijnen, J. Vierendeels, F. N. van de Vosse, and P. R. Verdonck. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput. Methods Biomech. Biomed. Eng. 7(3):139–146, 2004.

    Article  Google Scholar 

  17. Dumont, K., J. Vierendeels, R. Kaminsky, G. J. Van Nooten, and D. Bluestein. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J. Biomech. Eng. 129(4):558, 2007.

    Article  Google Scholar 

  18. Dumont, K., J. A. M. Vierendeels, P. Segers, G. J. Van Nooten, and P. R. Verdonck. Predicting ATS Open Pivot heart valve performance with computational fluid dynamics. J. Heart Valve Dis. 14(3):393–399, 2005.

    Google Scholar 

  19. Evangelista, A., F. A. Flachskampf, R. Erbel, F. Antonini-Canterin, C. Vlachopoulos, G. Rocchi, R. Sicari, P. Nihoyannopoulos, J. Zamorano, M. Pepi, O.-A. Breithardt, and E. Plonska-Gosciniak. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur. J. Echocardiogr. 11(8):645–658, 2010.

    Article  Google Scholar 

  20. Fortini, S., S. Espa, R. Toninato, L. Pacetti, M. F. Susin, and A. Cenedese, Analysis of the flow field downstream a bileaflet valve inside an aortic arch laboratory model, 16th Int Symp on Applications of Laser Techniques to Fluid Mechanics, pp. 1–10, 2012.

  21. Ge, L., L. P. Dasi, F. Sotiropoulos, and A. P. Yoganathan. Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs. viscous stresses. Ann. Biomed. Eng. 36(2):276–297, 2007.

    Article  Google Scholar 

  22. Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125(5):709–718, 2003.

    Article  Google Scholar 

  23. Grigioni, M., C. Daniele, C. Del Gaudio, U. Morbiducci, A. Balducci, G. D’Avenio, and V. Barbaro. Three-dimensional numeric simulation of flow through an aortic bileaflet valve in a realistic model of aortic root. ASAIO J. 51(3):176–183, 2005.

    Article  Google Scholar 

  24. King, M. J., J. Corden, T. David, and J. Fisher. A three-dimensional, time-dependent analysis of flow through a bileaflet mechanical heart valve: comparison of experimental and numerical results. J. Biomech. 29(5):609–618, 1996.

    Article  Google Scholar 

  25. King, M. J., T. David, and J. Fisher. An initial parametric study on fluid flow through bileaflet mechanical heart valves using computational fluid dynamics. Proc. Inst. Mech. Eng. H 203(1):1–14, 1994.

    Google Scholar 

  26. King, M. J., T. David, and J. Fisher. Three-dimensional study of the effect of two leaflet opening angles on the time-dependent flow through a bileaflet mechanical heart valve. Med. Eng. Phys. 19(3):235–241, 1997.

    Article  Google Scholar 

  27. Kuan, Y. H., F. Kabinejadian, V.-T. Nguyen, B. Su, A. P. Yoganathan, and H. L. Leo. Comparison of hinge microflow fields of bileaflet mechanical heart valves implanted in different sinus shape and downstream geometry. Comput. Methods Biomech. Biomed. Eng. 18(16):1785–1796, 2015.

    Article  Google Scholar 

  28. Lai, W. M., D. H. Rubin, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics. Oxford: Butterworth-Heinemann, 2009.

    MATH  Google Scholar 

  29. Li, C.-P., and P.-C. Lu. Numerical comparison of the closing dynamics of a new trileaflet and a bileaflet mechanical aortic heart valve. J. Artif. Organs 15(4):364–374, 2012.

    Article  Google Scholar 

  30. López-Honorato, E., P. J. Meadows, P. Xiao, G. Marsh, and T. J. Abram. Structure and mechanical properties of pyrolytic carbon produced by fluidized bed chemical vapor deposition. Nucl. Eng. Des. 238(11):3121–3128, 2008.

    Article  Google Scholar 

  31. Mao, S. S., N. Ahmadi, B. Shah, D. Beckmann, A. Chen, L. Ngo, F. R. Flores, Y. L. Gao, and M. J. Budoff. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad. Radiol. 15(7):827–834, 2008.

    Article  Google Scholar 

  32. Mohammadi, H., and K. Mequanint. Prosthetic aortic heart valves: modeling and design. Med. Eng. Phys. 33(2):131–147, 2011.

    Article  Google Scholar 

  33. Morbiducci, U., R. Ponzini, M. Nobili, D. Massai, F. M. Montevecchi, D. Bluestein, and A. Redaelli. Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J. Biomech. 42(12):1952–1960, 2009.

    Article  Google Scholar 

  34. Nichols, W., M. O’Rourke, and C. Vlachopoulos. Mcdonald’s blood flow in arteries. Shock 9(6):456, 1998.

    Google Scholar 

  35. Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. Maria Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid–structure interaction approach. J. Biomech. 41(11):2539–2550, 2008.

    Article  Google Scholar 

  36. “On-X Prosthetic Heart Valve Design and Features - On-X Life Technologies, Inc.” [Online]. Available: http://www.onxlti.com/medical-professionals/on-x-prosthetic-heart-valve-design-and-features/. [Accessed: 22-Nov-2015].

  37. Palatianos, G. M., A. M. Laczkovics, P. Simon, J. L. Pomar, D. E. Birnbaum, H. H. Greve, and A. Haverich. Multicentered European study on safety and effectiveness of the On-X prosthetic heart valve: intermediate follow-up. An. Thorac. Surg. 83(1):40–46, 2007.

    Article  Google Scholar 

  38. Pope, S. B. Turbulent Flows. Cambridge: Cambridge University Press, 2000.

    Book  MATH  Google Scholar 

  39. Simon, H. A., L. Ge, F. Sotiropoulos, and A. P. Yoganathan. Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann. Biomed. Eng. 38(3):841–853, 2010.

    Article  Google Scholar 

  40. Simon, H. A., H.-L. Leo, J. Carberry, and A. P. Yoganathan. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann. Biomed. Eng. 32(12):1607–1617, 2004.

    Article  Google Scholar 

  41. Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Comput. 47(3):245–256, 2009.

    Article  Google Scholar 

  42. Sotiropoulos, F., T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48(1):150902153828003, 2016.

    Article  Google Scholar 

  43. Yeh, H. H., D. Grecov, and S. Karri. Computational modelling of bileaflet mechanical valves using fluid-structure interaction approach. J. Med. Biol. Eng. 34(5):482, 2014.

    Article  Google Scholar 

  44. Yoganathan, A. P., Z. He, and S. Casey Jones. Fluid Mechanics of Heart Valves. Annu. Rev. Biomed. Eng. 6(1):331–362, 2004.

    Article  Google Scholar 

  45. Yun, B. M., J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40(7):1468–1485, 2012.

    Article  Google Scholar 

Download references

Acknowledgment

The Authors of this paper would like to appreciate the helps and advices from all members of the Cardiovascular Hemodynamic Research Group which is a collaboration between the University of Tehran and Pars Hospital.

Conflict of interest

The authors declare that they have no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Hanafizadeh.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirkhani, N., Davoudi, M.R., Hanafizadeh, P. et al. On-X Heart Valve Prosthesis: Numerical Simulation of Hemodynamic Performance in Accelerating Systole. Cardiovasc Eng Tech 7, 223–237 (2016). https://doi.org/10.1007/s13239-016-0265-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0265-y

Keywords

Navigation