Skip to main content

Advertisement

Log in

Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Brain computer interface (BCI) is a new communication way between man and machine. It identifies mental task patterns stored in electroencephalogram (EEG). So, it extracts brain electrical activities recorded by EEG and transforms them machine control commands. The main goal of BCI is to make available assistive environmental devices for paralyzed people such as computers and makes their life easier. This study deals with feature extraction and mental task pattern recognition on 2-D cursor control from EEG as offline analysis approach. The hemispherical power density changes are computed and compared on alpha–beta frequency bands with only mental imagination of cursor movements. First of all, power spectral density (PSD) features of EEG signals are extracted and high dimensional data reduced by principle component analysis (PCA) and independent component analysis (ICA) which are statistical algorithms. In the last stage, all features are classified with two types of support vector machine (SVM) which are linear and least squares (LS-SVM) and three different artificial neural network (ANN) structures which are learning vector quantization (LVQ), multilayer neural network (MLNN) and probabilistic neural network (PNN) and mental task patterns are successfully identified via k-fold cross validation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. McFarland DJ, Lefkowicz AT, Wolpaw JR (1997) Design and operation of an EEG-based brain-computer interface (BCI) with digital signal processing technology. Behav Res Meth Inst Comp 29:337–345

    Article  Google Scholar 

  2. Kostov A, Polak M (2000) Parallel man-machine training in development of EEG-based cursor control. IEEE Trans Rehabil Eng 8(2):203–205

    Article  CAS  PubMed  Google Scholar 

  3. Fabiani GE, McFarland DJ, Wolpaw JR, Pfurtscheller G (2004) Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Trans Neural Syst Rehabil Eng 12(3):331–338

    Article  PubMed  Google Scholar 

  4. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101(51):17849–17854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kayagil T, Bai O, Lin P, Furlani S, Vorbach S, Hallett M (2007) Binary EEG control for two-dimensional cursor movement: an online approach. Int Conf Complex Med Eng. doi:10.1109/ICCME.2007.4382005

  6. Wilson JA, Schalk G, Walton LM, Williams JC (2009) Using an EEG-based brain-computer interface for virtual cursor movement with BCI2000. J Vis Exp 29:1319

    PubMed  Google Scholar 

  7. Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C (2010) An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans Biomed Eng 57(10):2495–2505

    Article  PubMed  Google Scholar 

  8. Boudria Y, Feltane A, Besio W (2014) Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography. J Neural Eng 11(3):035014

    Article  PubMed  Google Scholar 

  9. Rambabu C, Murthy BR (2014) EEG signal with feature extraction using SVM and ICA classifiers. Int J Comp App 85(3):1–7

    Google Scholar 

  10. Singla R, Chambayil B, Khosla A, Santosh J (2011) Comparison of SVM and ANN for classification of eye events in EEG. J Biom Sci Eng 4:62–69

    Article  Google Scholar 

  11. Bascil MS, Tesneli AY, Temurtas F (2015) Multi-channel EEG signal feature extraction and pattern recognition on horizontal mental imagination task of 1-D cursor movement for brain computer interface. Australas Phys Eng Sci Med 38(2):229–239

    Article  Google Scholar 

  12. Jasper H (1958) The ten twenty electrode system of the international federation. Electro Clin Neuro 10(2):370–375

    Article  Google Scholar 

  13. Bhardwaj S, Jadhav P, Adapa B, Acharyya A, Naik GR (2015) Online and automated reliable system design to remove blink and muscle artefact in EEG. In 37th annual international conference of the IEEE engineering in medicine and biology society. pp 6784–6787

  14. Acar E (2011) Classification of motor imagery tasks in EEG signal and its application to a brain–computer interface for controlling assistive environmental devices. The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara

  15. Proakis JG, Manolakis DG (1996) Digital signal processing-principles, algorithms and applications, 3rd edn. Prentice-Hall, New York [chapter 12]

    Google Scholar 

  16. Stoica P, Moses R (2005) Spectral analysis of signals. Prentice-Hall International, New York

    Google Scholar 

  17. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2(6):559–572

    Article  Google Scholar 

  18. Cao LJ, Chua KS, Chong WK, Lee HP, Gu OM (2003) A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1):321–336

    Google Scholar 

  19. Semmlow JL (2014) Biosignal and biomedical image processing MATLAB-based applications, 1st edn. Marcel Dekker, New York [chapter 9]

    Google Scholar 

  20. Naik GR, Kumar DK (2011) An overview of independent component analysis and its applications. Informatica 35(1):63–81

    Google Scholar 

  21. Mozaffar S, Petr D (2002) Artifact extraction from EEG data using independent component analysis. Information Telecommunication and Technology Center, University of Kansas, Lawrence, KS, Technical Report ITTC-FY2003-TR-03050-02

  22. Chai R, Naik GR, Nugyen TN, Ling SH, Tran Y, Craig A, Nuguyen HT (2015) Driver fatigue classification with independent component by entropy rate bound minimization analysis in an EEG-based system. IEEE J Biomed Health Inform, pp (99):1–1

  23. Christian J, Jeanny H (1991) Blind separation of sources, part I: an adaptive algorithm based on neuromimetic architecture. Sig Process 24(1):1–10

    Article  Google Scholar 

  24. Al-Ani A, Naik GR, Abbass HA (2015) A methodology for synthesizing interdependent multichannel EEG data with a comparison among three blind source separation techniques. International conference on neural information processing. Springer, Berlin, pp 154–161

  25. Müller KR, Krauledat M, Dornhege G, Curio G, Blankertz B (2004) Machine learning techniques for brain-computer interfaces. Bio. Tech. 49:11–12

    Article  Google Scholar 

  26. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  27. Gunn SR (1998) Support vector machines for classification and regression. University of Southampton, Technical Report

    Google Scholar 

  28. Vapnik V (1998) Statistical learning theory. Wiley, New York

    Google Scholar 

  29. Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167

    Article  Google Scholar 

  30. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  31. Suykens JAK, Vandewalle J (2001) Optimal control by least squares support vector machines. Neural Netw 14(1):23–35

    Article  CAS  PubMed  Google Scholar 

  32. Gestel TV, Suykens JAK, Baesens B, Viaene S, Vanthienen J, Dedene G, De Moor B, Vandewalle J (2004) Benchmarking least squares support vector machine classifiers. Mach Learn 54:5–32

    Article  Google Scholar 

  33. Kohonen T. (1990) Improved versions of learning vector quantization. In: Proceedings of the IEEE international joint conference on neural networks, New York, pp 545–550

  34. Temurtas F (2009) A comparative study on thyroid disease diagnosis using neural networks. Exp Sys App 36:944–949

    Article  Google Scholar 

  35. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland J (eds) Parallel distributed processing. MIT Press, Cambridge, pp 318–362

    Google Scholar 

  36. Hagan MT, Menhaj M (1994) Training feed forward networks with the Marquardt algorithm, IEEE Trans. Neural Netw 5:989–993

    Article  CAS  Google Scholar 

  37. Bascil MS, Temurtas F (2011) A study on hepatitis disease diagnosis using multilayer neural network with Levenberg Marquardt training algorithm. J Med Sys 35(3):433–436

    Article  Google Scholar 

  38. Specht DF (1990) Probabilistic neural networks. Neural Netw 3:109–118

    Article  Google Scholar 

  39. Hazrati MKh, Erfanian A (2010) An online EEG based brain–computer interface for controlling hand grasp using an adaptive probabilistic neural network. Med Eng Phy 32(7):730–739

    Article  Google Scholar 

  40. Bascil MS, Oztekin H (2012) A study on hepatitis disease diagnosis using probabilistic neural network. J Med Sys 36(3):1603–1606

    Article  Google Scholar 

  41. Nasehi S, Pourghassem H (2012) An optimal EEG-based emotion recognition algorithm using Gabor features. WSEAS Trans Sign Proc 3(8):87–99

    Google Scholar 

  42. Chai R, Ling SHO, Hunter GP, Tran Y, Nguyen HT (2014) Brain–computer interface classifier for wheelchair commands using neural network with fuzzy particle swarm optimization. IEEE J Biomed Health Inform 18(5):1614–1624

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Serdar Bascil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bascil, M.S., Tesneli, A.Y. & Temurtas, F. Spectral feature extraction of EEG signals and pattern recognition during mental tasks of 2-D cursor movements for BCI using SVM and ANN. Australas Phys Eng Sci Med 39, 665–676 (2016). https://doi.org/10.1007/s13246-016-0462-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0462-x

Keywords

Navigation