Skip to main content
Log in

SFB 880: fundamentals of high lift for future commercial aircraft

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The recently founded Collaborative Research Centre SFB 880 of the Technische Universität Braunschweig, “Fundamentals of High-Lift for Future Commercial Aircraft”, develops new knowledge in aircraft noise, advanced approaches towards active high lift, and in the dynamics of flight with active high lift during short takeoff and landing operations. The research centre has therefore devised a range of research projects that aim at integrated aeroacoustic and aerodynamic design capabilities for drastic noise reductions and the generation of active high lift with an extremely high efficiency of the used onboard power. Flight dynamics of commercial aircraft with increased lift capabilities for takeoff and landing by means of active control and including the effects of aeroelasticity and engine failure modes are also investigated. The research centre has developed a joint strategy for technology assessment using high-quality conceptual design data of a reference aircraft that represents the state of the art in CO2 reductions, low noise, and short takeoff and landing for point-to-point air connections within Europe. The paper describes the overall strategy of the coordinated research work and gives examples of recent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Flightpath 2050—Europe’s Vision for Aviation: Report on the High Level Group on Aviation Research. (2011) (ISBN 978-92-79-19724-6). http://www.acare4europe.org. Accessed 20 Aug 2013

  2. Henke, R., Lammering, T., Anton, E.: Impact of an innovative quiet regional aircraft on the air transportation system. J. Aircr. 47(3), 875–886 (2010)

    Article  Google Scholar 

  3. Werner-Westphal, C., Heinze, W., Horst, P.: Multidisciplinary integrated preliminary design applied to unconventional aircraft configurations. J. Aircr. 45(2), 581–590 (2008)

    Article  Google Scholar 

  4. Werner-Spatz, C., Heinze, W., Horst, P., Radespiel, R.: Multidisciplinary conceptual design for aircraft with circulation control high-lift systems. CEAS Aeronaut. J. 3, 145–164 (2012)

    Article  Google Scholar 

  5. Koeppen, C.: Method for model-based estimations of system mass in aircraft pre-design. In: Proceedings of the 66th Annual Conference of the Society of Allied Weight Engineers. SAWE Paper No. 3428, Los Angeles (2007)

  6. Mattingly, J.D., Heiser, W.H., Daley, D.H.: Aircraft Engine Design. Appendix H Turboprop Engine, pp. 507–531. AIAA, New York (1987)

    Google Scholar 

  7. Baum, J.A., Dumais, P.J., Mayo, M.G., Metzger, F.B., Shenkman, A.M., Walker, G.G.: Prop-fan data support study. In: Technical Report. NASA CR-152141, Moffett Field (1978)

  8. Delfs, J., Faßmann, B., Lippitz, N., Lummer, M., Mößner, M., Müller, L., Rurkowska, K., Uphoff, S.: SFB 880—fundamentals of aeroacoustics. In: Proceedings Deutscher Luft- und Raumfahrt-kongress, 10–12 September 2013, Stuttgart (2013)

  9. Seume, J., Teichel, S., Burnazzi, M., Schwerter, M., Behr, C., Rudenko, A., Schmitz, A., Dörbaum, M. Atalayer, Ç.: SFB 880—efficient high lift. In: Proceedings Deutscher Luft- und Raumfahrtkongress, 10–12 September 2013, Stuttgart (2013)

  10. Horst, P., Keller, D., Diekmann, J., Krukow, I., Sommerwerk, K.: SFB 880—flight dynamics. In: Proceedings Deutscher Luft- und Raumfahrtkongress, 10–12 September 2013, Stuttgart (2013)

  11. Mößner, M., Radespiel, R.: Numerical simulations of turbulent flows over porous media. In: 21st AIAA Computational Fluid Dynamics Conference, June 24–27, San Diego, CA, Paper AIAA-2013-2963 (2013)

  12. Uphoff, S., Krafczyk, M.: Numerical simulation of sound absorption in an impedance tube and turbulent flow around a flat plate. In: Radespiel, R., Semaan, R. (eds.) SFB 880—Fundamentals of High-Lift for Future Commercial Aircraft, pp. 40–51 (2013) (ISBN 978-3-928628-63-1)

  13. Faßmann, B., Delfs, J., Ewert, R., Dierke, J.: Reduction of emitted sound by application of porous trailing edges. In: Radespiel, R., Semaan, R. (eds.) SFB 880—Fundamentals of High-Lift for Future Commercial Aircraft, pp. 1–11 (2013) (ISBN 978-3-928628-63-1)

  14. Hinze, B., Rösler, J., Schmitz, F.: Production of nanoporous superalloy membranes by load-free coarsening of γ’-precipitates. Acta Mater. 59, 3049–3060 (2011)

    Article  Google Scholar 

  15. Rösler, J., Krause, W., Hinze, B.: A concept fort he control of pore size in superalloy membranes. Metals 4, 1–7 (2014)

    Article  Google Scholar 

  16. Müller, L., Lummer, M., Kozulovic, D., Delfs, J., Hepperle, M.: Aerodynamic and acoustic assessment of a high-lift channel wing configuration. In: Radespiel, R., Semaan, R. (eds.): SFB 880—Fundamentals of High-Lift for Future Commercial Aircraft, pp. 12–28 (2013) (ISBN 978-3-928628-63-1)

  17. Müller, L., Kozulovic, D., Radespiel, R.: Aerodynamic performance of an over-the-wing propeller configuration at increasing Mach number. In: Proceedings Deutscher Luft- und Raumfahrtkongress, 10–12 September 2013, Stuttgart (2013)

  18. Rurkowskaja, K., Langer, S., Beck, S.C.: Flow induced sound in poroelastic materials. In: Radespiel, R., Semaan, R. (eds.) SFB 880—Fundamentals of High-Lift for Future Commercial Aircraft, pp. 52–62 (2013) (ISBN 978-3-928628-63-1)

  19. Zahid, M., Beck, S.C., Langer, S.: Modeling of flow-induced sound in poroelastic materials. In: 5th Biot Conference on Poromechanics, BIOT-5, Wien (2013)

  20. Yaros, S.F., et al.: Synergistic airframe-propulsion interactions and integrations. NASA/TM-1998-207644 (1998)

  21. Jensch, C., Pfingsten, K.C., Radespiel, R., Schuermann, M., Haupt, M., Bauss, S.: Design aspects of a gapless high-lift system with active blowing. In: Deutscher Luft- und Raumfahrtkongress, 8–10 September 2009, Aachen (2009)

  22. Burnazzi, M., Radespiel, R.: Design of a droopnose configuration for a Coanda active flap application. In: 51st AIAA Aerospace Science Meeting, 7–10 January 2013, Gapevine, TX, Paper AIAA 2013–487 (2013)

  23. Schmitz, A., Horst, P.: Numerical modeling of the change in stiffness properties of cross-ply laminates subjected to large bending curvatures. Key Eng. Mater. 577–578, 173–176 (2014)

    Google Scholar 

  24. Rudenko, A., Monner, H.P., Rose, M.: A process chain for structural optimization of a smart droop nose for an active blown high lift system. In: 24th AIAA/ASME/AHS Adaptive Structures Conference, 13–17 January 2014, National Harbor, MD, Paper AIAA 2014–1414 (2014)

  25. Teichel, S., Verstraete, T., Seume, J.: Optimized preliminary design of compact axial, compressors: a comparison of two design tools. In: 31st AIAA Applied Aerodynamics Conference, 24–27 June 2013, San Diego, CA, Paper AIAA-2013-2652 (2013)

  26. Dörbaum, M., Juris, P., Stübig, C., Ponick, B.: Design of High Speed Motor with a High Power Range for Use in Future Aircraft. PCIM Europe, Nürnberg (2013)

    Google Scholar 

  27. Keller, D.: Numerical investigation of engine effects on the stability and controllability of a transport aircraft with circulation control. In: 31st AIAA Applied Aerodynamics Conference, 24–27 June 2013, San Diego, CA, Paper AIAA-2013-3031 (2013)

  28. Diekmann, J.H.: Trim analysis of nonlinear flight dynamics for a civil aircraft with active high lift. In: Proceedings Deutscher Luft- und Raumfahrtkon-gress, 10–12 September 2013, Stuttgart (2013)

  29. Sommerwerk, K., Haupt, M.: Design analysis and sizing of a circulation controlled CFRP wing with Coanda flaps via CFD–CSM coupling. CEAS Aeronaut. J. 5(1), 95–108 (2014)

    Article  Google Scholar 

  30. Sommerwerk, K., Haupt, M., Horst, P.: Aeroelastic performance assessment of a wing with Coandă effect circulation control via fluid-structure interaction. In: 31st AIAA Applied Aerodynamics Conference, 24–27 June 2013, San Diego, CA, Paper AIAA-2013-2791 (2013)

  31. Krukow, I., Dinkler, D.: A reduced-order model for aeroelastic studies on airfoils with active high-lift devices. In: Proceedings International Forum on Aeroelasticity and Structural Dynamics, 24–26 June 2013, Bristol (2013)

  32. Rosic, B.V., Diekmann, J.H.: Non-intrusive methods for the uncertainty quantification of the basic aircraft model (BACM). In: Radespiel, R., Semaan, R. (eds.) SFB 880—Fundamentals of High-Lift for Future Commercial Aircraft, pp. 204–216 (2013) (ISBN 978-3-928628-63-1)

Download references

Acknowledgments

The funding of the Coordinated Research Centre SFB 880 by the German Research Foundation, DFG, is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Radespiel.

Additional information

This paper is based on a presentation at the German Aerospace Congress, September 10–12, 2013, Stuttgart, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radespiel, R., Heinze, W. SFB 880: fundamentals of high lift for future commercial aircraft. CEAS Aeronaut J 5, 239–251 (2014). https://doi.org/10.1007/s13272-014-0103-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0103-6

Keywords

Navigation