Skip to main content
Log in

SFB 880: aeroacoustic research for low noise take-off and landing

  • Original Article
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper gives an overview about prediction capabilities and the development of noise reduction technologies appropriate to reduce high lift noise and propeller noise radiation for future low noise transport aircraft with short take-off and landing capabilities. The work is embedded in the collaborative research centre SFB 880 in Braunschweig, Germany. Results are presented from all the acoustics related projects of SFB 880 which cover the aeroacoustic simulation of the effect of flow permeable materials, the characterization, development, manufacturing and operation of (porous) materials especially tailored to aeroacoustics, new propeller arrangements for minimum exterior noise due to acoustic shielding as well as the prediction of vibration excitation of aircraft structures, reduced by porous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Delfs, J.: Aerodynamisches Bauteil mit einer geschlitzten Hinter- oder Seitenkante (aerodynamic device with slotted trailing- or side edge, German patent DE 10 2006 049 616 A1, submitted 20.10.2006, German Patent Authority (2010)

  2. Herr, M.: Design criteria for low-noise trailing edges. In: 13th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2007-3470

  3. Faßmann, B., Delfs, J., Ewert, R., Dierke, J.: Reduction of emitted sound by application of porous trailing edges. In: Radespiel, R., Semaan, R.: SFB 880––Fundamentals of High-Lift for Future Commercial Aircraft, Biennial Report. TU Braunschweig, Campus Research Airport, (2013)

  4. Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., Kornow, O.: CAA broadband noise prediction for aeroacoustic design. J Sound Vib 330, 4139–4160 (2011)

    Article  Google Scholar 

  5. Whitaker, S.: The Method of Averaging. Kluwer Academic, Dordrecht (1999)

    Book  Google Scholar 

  6. Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries, Canada (2006)

    Google Scholar 

  7. Cécora, R.-D., Eisfeld, B., Probst, A., Crippa, S., Radespiel, R.: Differential reynolds stress modeling for aeronautics, In: 50th AIAA Aerospace Sciences Meeting, (2012)

  8. Lemos, M.J.S., Silva, R.A.: Turbulent flow over a layer of a highly permeable medium simulated with a diffusion-jump model for the interface. Int. J. Heat Mass Transf. 49, 546–556 (2006)

    Article  MATH  Google Scholar 

  9. Schwamborn, D., Gerhold, T., Heinrich, R.: The DLR TAU-Code: recent applications in research and industry, IN: European Conference on Computational Fluid Dynamics, ECCOMAS CFD 06, (2006)

  10. Breugem, W.-P.: The influence of wall permeability on laminar and turbulent flows, PHD thesis, Technische Universiteit Delft, Delft (2005)

  11. Mößner, M., Radespiel, R.: Numerical Simulations of turbulent flow over porous media, AIAA2013-2963, 21st AIAA Computational Fluid

  12. Ahrenholz, B., Tölke, J., Lehmann, P., Peters, A., Kaestner, A., Krafczyk, M., Durner, W.: Prediction of capillary hysteresis in porous material using lattice Boltzmann methods and comparison to experimental data and a morphological pore network model. Adv. Water Resour. 31, 1151–1173 (2008)

    Article  Google Scholar 

  13. Freudiger, S.: Entwicklung eines parallelen, adaptiven, komponentenbasierten Strömungskerns für hierarchische Gitter auf Basis des Lattice-Boltzmann–Verfahrens. PHD thesis, TU Braunschweig, Germany, (2009)

  14. Ducros, F., Comte, P., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)

    Article  MATH  Google Scholar 

  15. Rösler, J., Näth, O., Jäger, S., Schmitz, F., Mukherji, D.: Fabrication of nanoporous Ni-based superalloy membranes. Acta Mater. 53, 1397–1406 (2004)

    Article  Google Scholar 

  16. Hinze, B., Rösler, J., Schmitz, F.: Production of nanoporous superalloy membranes by load-free coarsening of γ′-precipitates. Acta Mater. 59, 3049–3060 (2011)

    Article  Google Scholar 

  17. GKN Sinter Metals, [Online]. Available: http://gkn-filters.de/downloads/pdf/download.php?filename=metal-fibre-felt-fil.pdf. [Accessed 1 October 2010]

  18. Müller, L., Kozulovic, D., Hepperle, M., Radespiel, R.: Installation effects of a propeller over a wing with internally blown flaps, In: Proceedings of the 30th AIAA Applied Aerodynamics Conference, Paper AIAA 2012-3335, New Orleans (2012)

  19. Müller, L., Kozulovic, D., Hepperle, M., Radespiel, R.: The Influence of the propeller position on the aerodynamics of a channel wing, In: Proceedings of Deutscher Luft- und Raumfahrtkongress 2012, Berlin, Germany, (2012)

  20. Jensch, C., Pfingsten, K.-C., Radespiel, R., Schuermann, M., Haupt, M., Bauss, S.: Design aspects of a gapless high-lift system with active blowing, In: Proceedings of Deutscher Luft- und Raumfahrtkongress 2009, Aachen, Germany, (2009)

  21. Raichle, A., Melber-Wilkening, S., Himisch, J.: A new actuator disk model for the tau code and application to a sailplane with a folding engine, In: Proceedings of the 15th STAB/DGLR Symposium, Darmstadt, Germany, (2006)

  22. Coifman, G., Rokhlin, V., Wandzura, S.: The fast multipole method for the wave equation: a pedestrian prescription. IEEE Antennas Propag. Mag. 35(3), 7–12 (1993)

    Article  Google Scholar 

  23. Sylvand, G.: Performance of a parallel implementation of the FMM for electromagnetics applications. Int. J. Num. Meth. Fluids 43(8), 865–879 (2003)

    MATH  Google Scholar 

  24. Glegg, S.A.L.: Effect of centerbody scattering on propeller noise. AIAA J. 29(4), 572–576 (1991)

    Article  Google Scholar 

  25. Allard, J.F., Atalla, N.: Propagation of sound in porous media. John Wiley & Sons Ltd, New York (2009)

    Book  Google Scholar 

  26. Atalla, N., Sgard, F.: Modelling of perforated plates and screens using rigid frame porous models. J. Sound Vib. 303, 195–208 (2007)

    Article  Google Scholar 

  27. Atala, N., Panneton, R., Debergue, P.: A mixed displacement–pressure formulation for poroelastic materials. J. Acoust. Soc. Am. 104, 1444–1452 (1998)

    Article  Google Scholar 

  28. DIN 29053: Acoustics; material for acoustical applications; Determination of airflow resistance (ISO 9053:1991). German version EN 29053:1993, (1993)

  29. Levenberg, K.: A method for the solution of certain problems in least squares. Q. Appl. Math. 2, 164–168 (1944)

    MathSciNet  MATH  Google Scholar 

  30. Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11, 431–441 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rurkowska, K., Langer, S.: Prediction of acoustic behaviour of microperforated plates in high-lift configuration. In: Proceedings of DAGA 2013, Meran-Italy (2013)

  32. Herr, M., Rossignol, K.-St., Delfs, J, Mößner, M., Lippitz, N.: Specification of porous materials for low noise trailing edge applications. In: AIAA Paper 2014–3041, 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA (2014)

Download references

Acknowledgments

This work was funded by the Deutsche Forschungsge-meinschaft DFG (German Research Funding Organisation) in the framework of the collaborative research centre SFB 880. Computational resources were provided by the North-German Supercomputing Alliance HLRN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Delfs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delfs, J., Faßmann, B., Lippitz, N. et al. SFB 880: aeroacoustic research for low noise take-off and landing. CEAS Aeronaut J 5, 403–417 (2014). https://doi.org/10.1007/s13272-014-0115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-014-0115-2

Keywords

Navigation