Skip to main content

Advertisement

Log in

A systems architecting framework for optimal distributed integrated modular avionics architectures

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This work presents a novel holistic framework for Distributed Integrated Modular Avionics (DIMA) architecture design and optimization. Integrated Modular Avionics (IMA) are a standardization of avionics components. IMA is beneficial in weight and costs if the complexity of sizing, function allocation, and topology selection is mastered. In preceding publications, stand-alone models and optimization algorithms were developed, which significantly support different aspects of DIMA architecture design. This article extends, integrates, and compares all methods in a holistic framework, which enables model and algorithm-aided design of avionics architectures. Domain-specific modeling of systems software, hardware, and aircraft anatomy enables automated verification and early evaluation of architectures. Moreover, the model is the foundation for a flexible kit of eight optimization routines. For design issues in which humans likely lose the overview optimization routines are proposed. The degree of freedom in optimization ranges from function mapping over routing to a complete architecture generation. Routines for platform selection, network, and topology optimization are unique and unrivaled today. All optimization problems are solved globally optimal and a multi-objective solving algorithm calculates the best trade-off architectures for contradicting objectives, the Pareto optimum. All optimization routines are extensively tested by designing the optimal DIMA architecture for aircraft system functions in an A320-like scenario. Results show significant optimization potential of generated architectures compared to a manually designed one. The resulting architectures are analyzed and compared in performance and structure in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Halle, M., Thielecke, F.: Konfigurationsmanagement für Integrierte Modulare Avionik. Deutscher Luft- und Raumfahrtkongress, Hamburg (2010)

    Google Scholar 

  2. Prisaznuk, P.J.: Integrated modular avionics. Aerospace and Electronics Conference, vol. 1, pp. 39–45, May 1992

  3. Fuchsen, R.: Preparing the next generation of IMA: a new technology for the SCARLETT Program. Digital Avionics Systems Conference, pp. 7.B.5–1 –7.B.5–8, Oct 2009

  4. Watkins, C.B.: Integrated modular avionics: managing the allocation of shared intersystem resources. 25th Digital Avionics Systems Conference, pp. 1–12, Oct 2006

  5. Butz, H.: Open integrated modular avionic (IMA): state of the art and future development road map at Airbus Deutschland. In: Proceedings of the 1st International Workshop on Aircraft System Technologies, pp. 211–222, Mar 2007

  6. Itier, J-B.: IMA1G—Genesis and results. Scarlett Moscow—1st Forum, Sept 2009

  7. Maier, M.W., Rechtin, E.: The Art of Systems Architecting. CRC Press, Boca Raton (2000)

    Google Scholar 

  8. Fraboul, C., Martin, F.: Modeling advanced modular avionics architectures for early real-time performance analysis. In: Proceedings of the Seventh Euromicro Workshop on Parallel and Distributed Processing, pp. 181–188 (1999)

  9. Forster, S., Fischer, M., Windisch, A., Balser, B., Monjau, D.: A new specification methodology for embedded systems based on the π-calculus process algebra. Rapid Syst Prototyp 200, 26–32 (2003)

    Google Scholar 

  10. Gamatie, A., Brunette, C., Delamare, R., Gautier, T., Talpin, J.-P.: A modeling paradigm for integrated modular avionics design. In: 32nd EUROMICRO Conference on Software Engineering and Advanced Applications, pp. 134–143, Sept 2006

  11. Delange, J., Pautet, L., Plantec, A., Kerboeuf, M., Singhoff, F., Kordon, F.: Validate, simulate, and implement Arinc653 systems using the AADL. In: Proceedings of the ACM SIGAda Annual International Conference on Ada and Related Technologies, pp. 31–44 (2009)

  12. Lafaye, M., Gatti, M., Faura, D., Pautet, L.: Model driven early exploration of IMA execution platform. In: Digital Avionics Systems Conference, pp. 7A2–1–7A2–11, Oct 2011

  13. AADL. http://www.aadl.info (2009)

  14. Object Modeling Group. Omg Systems Modeling Language (OMG SysML). http://www.omg.org/spec/SysML/1.3/, June 2012

  15. Sagaspe, L., Bel, G., Bieber, P., Boniol, F., Castel, C.: Safe allocation of avionics shared resources. In: IEEE International Symposium on High-Assurance Systems Engineering, pp. 25–33 (2005)

  16. Sagaspe, L., Bieber, P.: Constraint-based design and allocation of shared avionics resources. In: 26th AIAA-IEEE Digital Avionics Systems Conference, Dallas (2007)

  17. Bieber, P., Bodeveix, J.P., Castel, C., Doose, D., Filali, M., Minot, F., Pralet, C.: Constraint-based design of avionics platform—preliminary design exploration. In: 4th European Congress ERTS Embedded Real Time Software (2008)

  18. Al Sheikh, A., Brun, O., Hladik, P-E.: Decision support for task mapping on IMA architecture. Junior Researcher Workshop on Real-Time Computing (JR-WRTC2009), pp. 31–34, Oct 2009

  19. Salomon, U.: Automatic design of IMA-based systems. Ph.D. thesis, Faculty of Aerospace Engineering and Geodesy of the University of Stuttgart (2014)

  20. Shu, Z.: Communication infrastructure supporting real-time applications. Ph.D. thesis, Technische Universität Hamburg-Harburg (2008)

  21. Charara, H., Scharbarg, J.-L., Ermont, J., Fraboul, C.: Methods for bounding end-to-end delays on an AFDX network. In: 18th Euromicro Conference on Real-Time Systems (2006)

  22. Sivanthi, T., Zhang, S., Killat, U.: A holistic framework for optimal avionics system resource planning. In: AST 2007 Workshop on Aircraft System Technologies, pp. 257–268 (2007)

  23. Carta, D.C., de Oliveira, J.M.P., Starr, R.R.: Allocation of avionics communication using boolean satisfiability. In: IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), pp. 6C1–1–6C1–12, Oct 2012

  24. Al Sheikh, A., Brun, O., Chéramy, M., Hladik, P.-E.: Optimal design of virtual links in AFDX networks. Real Time Syst 16, 1–29 (2012)

    Google Scholar 

  25. Annighöfer, B., Kleemann, E., Thielecke, F.: Model-based development of integrated modular avionics architectures on aircraft-level. In: Deutscher Luft- und Raumfahrtkongress, Bremen, Sept 2011

  26. Annighöfer, B., Thielecke, F.: Supporting the Design of Distributed Integrated Modular Avionics Systems with Binary Programming. Deutscher Luft- und Raumfahrtkongress, Berlin (2012)

    Google Scholar 

  27. Annighöfer, B., Thielecke, F.: Multi-objective mapping optimization for distributed modular integrated avionics. In: 31st Digital Avionics System Conference, Williamsburg, VA, USA, Oct 2012

  28. Annighöfer, B., Kleemann, E., Thielecke, F.: Automated selection, sizing, and mapping of integrated modular avionics modules. In: 32nd Digital Avionics System Conference, Syracuse, NY, USA, Oct 2013

  29. Annighöfer, B., Reif, C., Thielecke, F.: Network topology optimization for distributed integrated modular avionics. In: 33rd Digital Avionics System Conference, Colorado Springs, CO, USA, Oct 2014

  30. Annighöfer, B.: Model-based architecting and optimization of distributed integrated modular avionics. Dissertation, Hamburg University of Technology (2015)

  31. Ozlen, M., Burton, B.A.: Multi-objective integer programming: an improved recursive algorithm. arXiv:1104.5324v1 (2011)

  32. Neumann, K., Kleemann, E., Reichel, R., Lehmann, M.: Quantitative evaluation criteria for modern avionic system architectures. In: Deutscher Luft- und Raumfahrtkongress. DGLR, Sept 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Annighöfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Annighöfer, B., Thielecke, F. A systems architecting framework for optimal distributed integrated modular avionics architectures. CEAS Aeronaut J 6, 485–496 (2015). https://doi.org/10.1007/s13272-015-0156-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-015-0156-1

Keywords

Navigation