Skip to main content
Log in

Comparison of cellular effects of titanium dioxide nanoparticles with different photocatalytic potential in human keratinocyte, HaCaT cells

  • Original Paper
  • Published:
Molecular & Cellular Toxicology Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) nanoparticle is an important product for nanotechnology because of its high stability, anticorrosion, and photocatalysis. It is also used in cosmetic and skin care products, particularly in sunblocks, where it helps to protect the skin from UV light, especially in the case of nanosized particles (<100 nm). There are extensive concerns on the potential risks of TiO2 nanoparticle to human health and environment. Some forms at least may be genotoxic, photocatalytic, and/or carcinogenic. In this study, we have characterized the physico-chemical properties of commercially available photocatalytic TiO2 nanoparticle and compared to cellular effects in HaCaT Cells with or without photoactivation. The present study has shown that TiO2 nanoparticles are cytotoxic to HaCaT cells even in the absence of photoactivation. This effect became more pronounced in the simultaneous irradiation of UVA dependent on photocatalytic potential of TiO2 nanoparticle. We also found that the cytotoxicity and oxidative stress of TiO2 nanoparticles strongly depends on physico-chemical properties including structure (anantase, rutile, or mixture) or photocatalytic potency of TiO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trouiller, B. et al. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice, Cancer Res 69:8784–8789 (2009).

    Article  PubMed  CAS  Google Scholar 

  2. Lomer, M. C., Thompson, R. P. & Powell, J. J. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 61:123–130 (2002).

    Article  PubMed  Google Scholar 

  3. Gelis, C. et al. Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models. Photodermatol Photoimmunol Photomed 19:242–253 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Baan, R. et al. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 7:295–296 (2006).

    Article  PubMed  Google Scholar 

  5. Fryzek, J. P. et al. A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 45:400–409 (2003).

    Article  PubMed  CAS  Google Scholar 

  6. Johnston, H. J. et al. Identification of the mechanisms that drive the toxicity of TiO2 particulates: the contribution of physicochemical characteristics. Part Fibre Toxicol 6:1–27 (2009).

    Article  Google Scholar 

  7. Lam, C. W., James, J. T., McCluskey, R. & Hunter, R. L. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134 (2004).

    Article  PubMed  CAS  Google Scholar 

  8. Peters, K. et al. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15:321–325 (2004).

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto, A., Honma, R., Sumita, M. & Hanawa, T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 68A:244–256 (2004).

    Article  CAS  Google Scholar 

  10. Zhang, Q. et al. Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: role of free radicals. J Toxicol Environ Health A 53:423–438 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. Rahman, Q. et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian Hamster embryo fibroblasts. Environ Health Perspect 110:797–800 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Gurr, J., Wang, A. S. S., Chen, C. & Jan, K. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213:66–73 (2005).

    Article  PubMed  CAS  Google Scholar 

  13. Wang, J. J., Sanderson, B. J. S. & Wang, H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res 628:99–106 (2007).

    PubMed  CAS  Google Scholar 

  14. Long, T. C. Titanium dioxide produces reactive oxygen species in immortalized brain microglia: Implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352 (2006).

    Article  PubMed  CAS  Google Scholar 

  15. Carinci, F. et al. Titanium-cell interaction: analysis of gene expression profiling. J Biomed Mater Res 66B: 341–346 (2003).

    Article  CAS  Google Scholar 

  16. Bermudez, E. et al. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77:347–357 (2004).

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, A. & Sun, Y. Photocatalytic killing effect of TiO2 nanoparticles on Ls-174-t human colon carcinoma cells. World J Gastroenterol 10:3191–3193 (2004).

    PubMed  CAS  Google Scholar 

  18. Nakagawa, Y., Wakuri, S., Sakamoto, K. & Tanaka, N. The photogenotoxicity of titanium dioxide particles. Mutat Res 394:125–132 (1997).

    PubMed  CAS  Google Scholar 

  19. Linnainmaa, K., Kiveipensa, P. & Vainio, H. Toxicity and cytogenetic studies of ultrafine titanium dioxide in cultured rat liver epithelial cells. Toxicol in Vitro 11:329–335 (1997).

    Article  PubMed  CAS  Google Scholar 

  20. Agrios, A. G. & Pichat, P. State of the art and perspectives on materials and applications of photocatalysis over TiO2. J Appl Electrochem 35:655–663 (2005).

    Article  CAS  Google Scholar 

  21. Herrmann, J. M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129 (1999).

    Article  CAS  Google Scholar 

  22. Serpone, N., Dondi, D. & Albini, A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorg Chim Acta 360:794–802 (2007).

    Article  CAS  Google Scholar 

  23. Brezova, V. et al. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study). J Photochem Photobiol B: Biology 79:121–134 (2005).

    Article  PubMed  CAS  Google Scholar 

  24. Dunford, R. et al. Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients. FEBS Lett 418:87–90 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. Uchino, T., Tokunaga, H., Ando, M. & Utsumi, H. Quantitative determination of OH radical generation and its cytotoxicity induced by TiO2-UVA treatment. Toxicol In Vitro 16:629–635 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. Sayes, C. M. et al. Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92:174–185 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Hidaka, H. et al. DNA damage photoinduced by cosmetic pigments and sunscreen agents under solar exposure and artificial UV illumination. J Oleo Sci 55:249–261 (2006).

    CAS  Google Scholar 

  28. Anderson, D. & Plewa, M. J. The international comet assay workshop. Mutagenesis 13:67–73 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. Fairbairn, D. W., Walburger, D. K., Fairbairn, J. J. & O’Neill, K. L. Key morphologic changes and DNA strand breaks in human lymphoid cells: discriminating apoptosis from necrosis. Scanning 18:407–416 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. Speit, G. & Hartmann, A. The comet assay (single-cell gel test). A sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol 113:203–212 (1999).

    PubMed  CAS  Google Scholar 

  31. Kawahara, T. et al. Photocatalytic activity of rutileanatase coupled TiO2 particles prepared by a dissolution-reprecipitation method. J Colloid Interf Sci 267: 377–381 (2003).

    Article  CAS  Google Scholar 

  32. Reeves, J. F., Davies, S. J., Dodd, N. J. F. & Jha, A. N. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticleinduced cytotoxicity and oxidative DNA damage in fish cells. Mutat Res-Fund Mol M 640:113–122 (2008).

    Article  CAS  Google Scholar 

  33. Theogaraj, E. et al. An investigation of the photo-clastogenic potential of ultrafine titanium dioxide particles. Mutat Res 634:205–219 (2007).

    PubMed  CAS  Google Scholar 

  34. Fenoglio, I., Greco, G., Livraghi, S. & Fubini, B. Non-UV-induced radical reactions at the surface of TiO2 Nanoparticles that may trigger toxic responsed. Chem Eur J 15:4614–4621 (2009).

    Article  CAS  Google Scholar 

  35. Li, S. Q. et al. Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food Chem Toxicol 46:3626–3631 (2008).

    Article  PubMed  CAS  Google Scholar 

  36. Park, E. J. et al. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Let 180:222–229 (2008).

    Article  CAS  Google Scholar 

  37. Turkez, H. & Geykoglu, F. An in vitro blood culture for evaluating the genotoxicity of titanium dioxide: the responses of antioxidant enzymes. Toxicol Ind Health 23:19–23 (2007).

    Article  PubMed  CAS  Google Scholar 

  38. Gopalan R. C. et al. The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3:33–39 (2009).

    Article  CAS  Google Scholar 

  39. Tice, R. R. et al. The single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Ik Yang or Youn-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, HO., Yu, M., Kang, S.K. et al. Comparison of cellular effects of titanium dioxide nanoparticles with different photocatalytic potential in human keratinocyte, HaCaT cells. Mol. Cell. Toxicol. 7, 67–75 (2011). https://doi.org/10.1007/s13273-011-0010-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13273-011-0010-4

Keywords

Navigation