Skip to main content
Log in

A concise review on smart polymers for controlled drug release

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Design and synthesis of efficient drug delivery systems are of critical importance in health care management. Innovations in materials chemistry especially in polymer field allows introduction of advanced drug delivery systems since polymers could provide controlled release of drugs in predetermined doses over long periods, cyclic and tunable dosages. To this end, researchers have taken advantages of smart polymers since they can undergo large reversible, chemical, or physical fluctuations as responses to small changes in environmental conditions, for instance, in pH, temperature, light, and phase transition. The present review aims to highlight various kinds of smart polymers, which are used in controlled drug delivery systems as well as mechanisms of action and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ram Mohan Kripa R, Prithiviraj C, Liping T, Nguyen KT. Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog. 2006;22:118–25.

    Article  Google Scholar 

  2. Ballauff M, Yan L. “Smart” nanoparticles: preparation, characterization and applications. Polymer. 2007;48:1815–23.

    Article  CAS  Google Scholar 

  3. Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol. 2009;85:848–60.

    Article  CAS  PubMed  Google Scholar 

  4. Ashok K, Akshay S, Igor Yu G, Bo M. Smart polymers: physical forms and bioengineering applications. Prog Polym Sci. 2007;32:1205–37.

    Article  Google Scholar 

  5. Sungwon K, Jong-Ho K, Oju J, Ick Chan K, Kinam P. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–30.

    Article  Google Scholar 

  6. Hoffman AS. Stimuli-responsive polymers: biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65:10–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shaikh Rahamathullah. Design and evaluation of controlled release layered matrix tablets of paracetamol and verapamil HCl, MSc Thesis, University Sains Malaysia, March 2009.

  8. Wagenaar BW, Müller BW. Piroxicam release from spray-dried biodegradable microspheres. Biomaterials. 1994;15:49–54.

    Article  CAS  PubMed  Google Scholar 

  9. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303:1818–22.

    Article  CAS  PubMed  Google Scholar 

  10. Jeong B, Gutowska A. Lessons from nature: stimuli responsive polymers and their biomedical applications. TRENDS Biotechnol. 2002;20:305–11.

    Article  CAS  PubMed  Google Scholar 

  11. Hong-ming D, Yu-Qiang M. Controlling cellular uptake of nanoparticles with pH-sensitive polymers. Sci Reports. 2013;3:2804.

    Google Scholar 

  12. Wen H, Guo J, Chang B, Yang W. pH-responsive composite microspheres based on magnetic mesoporous silica nanoparticle for drug delivery. Eur J Pharm Biopharm. 2013;84:91–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hoffmann AS, Stayton PS. Bioconjugates of smart polymers and proteins: synthesis and application. PharmaceutSci J. 2004;207:139–52.

    Google Scholar 

  14. Ying Z, Hon Fai C, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Del Rev. 2013;65:104–20.

    Article  Google Scholar 

  15. Jianzhong D, O’Reilly RK. Advances and challenges in smart and functional polymer vesicles. Soft Matt. 2009;5:3544–61.

    Article  Google Scholar 

  16. Honey Priya J, Rijo J, Anju A, Anoop KR. Smart polymers for the controlled delivery of drugs—a concise overview. Acta Pharm Sinica. 2014;4:120–7.

    Article  Google Scholar 

  17. Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv. 2014;32:693–710.

    Article  CAS  PubMed  Google Scholar 

  18. Chaoliang H, Sung Wan K, Doo Sung L. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Rel. 2008;127:189–207.

    Article  Google Scholar 

  19. Hruby M, Filippov SK, Stepanek P. Smart polymers in drug delivery systems on crossroads: which way deserves following? Eur Poly J. 2015;65:82–97.

    Article  CAS  Google Scholar 

  20. Arijit G, Abhijit P, Suma Oommen S, Kalyan Kumar S. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10:99–107.

    Article  Google Scholar 

  21. Mano JF. Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mat. 2008;10:515–27.

    Article  CAS  Google Scholar 

  22. Ruel-Gariépy E, Leroux J-C. In situ-forming hydrogels—review of temperature-sensitive systems. Eur J Pharm Biopharm. 2004;58:409–26.

    Article  PubMed  Google Scholar 

  23. Xing Z, Wang C, Yan J, Zhang L, Li L, Zha L. pH/temperature dual stimuli-responsive microcapsules with interpenetrating polymer network structure. Colloid Polym Sci. 2010;288:1723–9.

    Article  CAS  Google Scholar 

  24. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Del Rev. 2006;58:1655–70.

    Article  CAS  Google Scholar 

  25. Zhang J, Misra RDK. Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater. 2007;3:838–50.

    Article  CAS  PubMed  Google Scholar 

  26. Fleige E, Quadir MA, Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv Drug Del Rev. 2012;64:866–84.

    Article  CAS  Google Scholar 

  27. Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers—the all-in-one talents. Polymer Chem. 2014;5:25–36.

    Article  CAS  Google Scholar 

  28. Singh S, Singh J. Controlled release of a model protein lysozyme from phase sensitive smart polymer systems. Int J Pharm. 2004;271:189–96.

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Singh J. Controlled delivery of testosterone from smart polymer solution based systems: in vitro evaluation. Int J Pharm. 2005;295:183–90.

    Article  CAS  PubMed  Google Scholar 

  30. Kranz H, Bodmeier R. A novel in situ forming drug delivery system for controlled parenteral drug delivery. Int J Pharm. 2007;332:107–14.

    Article  CAS  PubMed  Google Scholar 

  31. Dong WY, Körber M, López Esguerra V, Bodmeier R. Stability of poly(D,L-lactide-co-glycolide) and leuprolide acetate in in-situ forming drug delivery systems. J Control Rel. 2006;115:158–67.

    Article  CAS  Google Scholar 

  32. Ravivarapu HB, Moyer KL, Dunn RL. Sustained suppression of pituitary- gonadal axis with an injectable, in situ forming implant of leuprolide acetate. J Pharm Sci. 2000;89:732–41.

    Article  CAS  PubMed  Google Scholar 

  33. Chu FM, Jayson M, Dineen MK, Perez R, Harkaway R, Tyler RC. A clinical study of 22.5 mg La-2550: A new subcutaneous depot delivery system for leuprolide acetate for the treatment of prostate cancer. J Urol. 2002;168:1199–203.

    Article  CAS  PubMed  Google Scholar 

  34. Bromberg L. Intelligent polyelectrolytes and gels in oral drug delivery. Curr Pharm Biotechnol. 2003;4:339–49.

    Article  CAS  PubMed  Google Scholar 

  35. Al-Tahami K, Singh J. Smart polymer based delivery systems for peptides and proteins. Recent Pat Drug Deliv Formul. 2007;1:65–71.

    Article  CAS  PubMed  Google Scholar 

  36. Chen S, Singh J. In vitro release of levonorgestrel from phase sensitive and thermosensitive smart polymer delivery systems. Pharm Dev Technol. 2005;10:319–25.

    Article  CAS  PubMed  Google Scholar 

  37. Higuchi T. Mechanism of sustained-action medication. J Pharm Sci. 1963;52:1145–9.

    Article  CAS  PubMed  Google Scholar 

  38. Royals MA, Fujita SM, Yewey GL, Rodriguez J, Schultheiss PC, Dunn RL. Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys. J Biomed Mater Res. 1999;45:231–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lupitsky R, Roiter Y, Minko S, Tsitsilianis C. Smart polymer molecules to responsive nanostructured surfaces. Langmuir. 2005;21:8591–3.

    Article  Google Scholar 

  40. Brown W, Schillen K, Hvidt S. Triblock copolymers in aqueous solution studied by static and dynamic light scattering and oscillatory shear measurements: influence of relative block sizes. J Phys Chem. 1992;96:6038–44.

    Article  CAS  Google Scholar 

  41. Galaev IY, Mattiasson B. 'Smart' polymers and what they could do in biotechnology and medicine. Trends Biotechnol. 1999;17:335–40.

    Article  CAS  PubMed  Google Scholar 

  42. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2001;53:321–39.

    Article  CAS  PubMed  Google Scholar 

  43. da Silva RMP, Pedro AJ, Oliveira JT, et al. Poly(N-isopropylacrylamide) surface-grafted chitosan membranes as new substrate for cell sheet engineering and manipulation. Sorrento, Italy: Proceedings on 19th European Conference on Biomaterials; 2005.

    Google Scholar 

  44. Yamato M, Konno C, Utsumi M, Kikuchi A, Okano T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials. 2002;23:561–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Zarrabi.

Ethics declarations

Conflict of interest

Authors declare that here is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghabegi Moghanjoughi, A., Khoshnevis, D. & Zarrabi, A. A concise review on smart polymers for controlled drug release. Drug Deliv. and Transl. Res. 6, 333–340 (2016). https://doi.org/10.1007/s13346-015-0274-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-015-0274-7

Keywords

Navigation