Skip to main content

Advertisement

Log in

Formulation and evaluation of cubosomes containing colchicine for transdermal delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Gout is a common inflammatory disease that is characterized by the deposition of serum urate crystals in the synovial fluids and joints. In spite of high efficiency of colchicine (COL) in treatment of gout, it has potential side effects associated with its oral administration. This study was aimed to enhance COL bioavailability and minimize associated side effects through transdermal delivery of COL-loaded cubosomes. Eight cubosomal dispersions were prepared according to Box-Behnken factorial design and the effect of COL, glyceryl monooleate (GMO), and surfactant (P407) concentrations on particle size distribution, zeta potential, and entrapment efficiency were assessed. The results revealed that the optimum formula exhibited a mean particle size of 73.07 ± 2.18 nm and entrapped 32.40 ± 2.33% of COL. The influence of transdermal application of COL cubosomal gel on the in vivo absorption of the drug was studied in rats compared with oral COL solution. The results of in vivo study showed that transdermal application of COL cubosomal gel significantly improves the drug absorption compared with oral COL solution, with evidence of a relative bioavailability of 4.6 times greater than that of oral COL solution. In conclusion, transdermal application of COL cubosomal gel may be a promising delivery system for enhancing the bioavailability of COL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143:499–516.

    CAS  PubMed  Google Scholar 

  2. Milind P, Sushila K, Neeraj S. Understanding gout beyond doubt. Int Res J Pharm. 2013;4(9):25–34.

    Google Scholar 

  3. Smith HS, Bracken D, Smith JM. Gout: current insights and future perspectives. J Pain. 2011;12(11):1113–29.

    CAS  PubMed  Google Scholar 

  4. Saigal R, Agrawal A. Pathogenesis and clinical management of gouty arthritis. J Assoc Physicians India. 2015;63(12):56–63.

    PubMed  Google Scholar 

  5. Rubin BR, Burton R, Navarra S, Antigua J, Londono J, Pryhuber KG, et al. Efficacy and safety profile of treatment with etoricoxib 120 mg once daily compared with indomethacin 50 mg three times daily in acute gout: a randomized controlled trial. Arthritis Rheum. 2004;50:598–606.

    CAS  PubMed  Google Scholar 

  6. Chao J, Terkeltaub R. A critical reappraisal of allopurinol dosing, safety, and efficacy for hyperuricemia in gout. Curr Rheumatol Rep. 2009;11:135–40.

    CAS  PubMed  Google Scholar 

  7. Khalil R, Hashem F, Zaki H, El-Arini S. Polymeric nanoparticles as potential carriers for topical delivery of colchicine: development and in vitro characterization. IJPSR. 2014;5(5):1746–56.

    CAS  Google Scholar 

  8. The International Pharmacopoeia - Sixth Edition, 2016 Colchicine (Colchicinum).

  9. Lange U, Schumann C, Schmidt KL. Current aspects of colchicine therapy. Classical indications and new therapeutic uses. Eur J Med Res. 2001;6:150–60.

    CAS  PubMed  Google Scholar 

  10. Ben-Chetrit E, Levy M. Colchicine prophylaxis in familial Mediterranean fever: reappraisal after 15 years. Semin Arthritis Rheum. 1991;20:241–6.

    CAS  PubMed  Google Scholar 

  11. Zemer D, Livneh A, Danon YL, Pras M, Sohar E. Long term colchicine treatment in children with familial Mediterranean fever. Arthritis Rheum. 1991:34973–7.

  12. Mc Kendy RJ, Kraag G, Seigel S, al-Awadhi A. Therapeutic value of colchicine in the treatment of patients with psoriatic arthritis. Ann Rheum Dis. 1993;52:826–8.

    Google Scholar 

  13. Hellmann DB, Imboden JB. Rheumatologic, immunologic and allergic disorders. In: Papadakis MA, McPhee SJ (eds). Current medical diagnosis and treatment. 58th ed. New York: Mc Graw Hill Education; 2019. p. 844.

  14. Niel E, Shermann JM. Colchicine today. Joint Bone Spine. 2006;73:672–8.

    CAS  PubMed  Google Scholar 

  15. Rochdi M, Sabouraud A, Girre V, Venet R, Schermann JM. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur J Clin Pharmacol. 1994;46:351–4.

    CAS  PubMed  Google Scholar 

  16. Rigante D, Torraca I, Avallone L, Pugliese AL, Gaspari S, Stabile A. The pharmacologic basis of treatment with colchicine in children with familial Mediterranean fever. Eur Rev Med Pharmacol Sci. 2006;10:173–8.

    CAS  PubMed  Google Scholar 

  17. Wilbur K, Makowsky M. Colchicine myotoxicity: case reports and literature review. Pharmacotherapy. 2004;24:1784–92.

    PubMed  Google Scholar 

  18. Baud FJ, Sabouraud A, Vicaut E, Taboulet P, Lang J, Bismuth C, et al. Treatment of severe colchicine overdose with colchicine-specific Fab fragments. N Engl J Med. 1995;332:642–5.

    CAS  PubMed  Google Scholar 

  19. Maduri S, Atla VR. Formulation of colchicine ointment for the treatment of acute gout. Singap Med J. 2012;53(11):750–4.

    Google Scholar 

  20. Mujoriya R, Dhamande K. A review on transdermal drug delivery system. Res J Sci Tech. 2011;3(5):227–31.

    Google Scholar 

  21. Tanwar H, Sachdeva R. Transdermal drug delivery system: a review. IJPSR. 2016;7(6):2274–90.

    CAS  Google Scholar 

  22. Garg G, Saraf S. Cubosomes: an overview. Biol Pharm Bull. 2007;30(2):350–3.

    CAS  PubMed  Google Scholar 

  23. Barkat AK, Naveed A, Haji MSK, Khalid W, Tariq M, Akhtar R, et al. Basics of pharmaceutical emulsions: a review. Afr J Pharm Pharmacol. 2011;5(25):2715–25.

    Google Scholar 

  24. Pan X, Han K, Peng X, Yang Z, Qin L, Zhu C, et al. Nanostructed cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19:6290–7.

    CAS  PubMed  Google Scholar 

  25. Peng X, Zhou Y, Han K, Qin L, Dian L, Li G, et al. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin. Drug Des Devel Ther. 2015;9:4209–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm Sin B. 2015;5(1):79–88.

    PubMed  Google Scholar 

  27. Chung H, Kim J, Um JY, Kwon IC, Jeong SY. Self-assembled “nanocubicle” as a carrier for peroral insulin delivery. Diabetologia. 2002;45:448–51.

    CAS  PubMed  Google Scholar 

  28. British Pharmacopoeia 2009. British Pharmacopoeia volume I & II. Monographs: Medicinal and Pharmaceutical Substances. Colchicine.

  29. Salah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Deliv. 2017;24(1):846–56.

    CAS  PubMed  Google Scholar 

  30. Cocco G, Chu DCC, Pandolfi S. Colchicine in clinical medicine. A guide for internists. Eur J Intern Med. 2010;21:503–8.

    CAS  PubMed  Google Scholar 

  31. Kovvasu SP, Kunamaneni P, Yeung S, Kodali B. Determination of colchicine in human plasma by a sensitive LC-MS/MS assay. World J Pharm Pharm Sci. 2018;7(3):35–44.

    CAS  Google Scholar 

  32. Danaei M, Dehghankhold M, Ataei S, Davarani SF, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.

    PubMed Central  Google Scholar 

  33. Verma DD, Verma S, Blume G, Fahr A. Particle size of liposomes influences dermal delivery of substances into skin. Int J Pharm. 2003;258:141–51.

    CAS  PubMed  Google Scholar 

  34. Verma DD, Verma S, Blume G, Fahr A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: a skin penetration and confocal laser scanning microscopy study. Eur J Pharm Biopharm. 2003;55:271–7.

    CAS  PubMed  Google Scholar 

  35. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;6:219.

    PubMed  PubMed Central  Google Scholar 

  36. Badran M. Formulation and in vitro evaluation of flufenamic acid loaded deformable liposome for improved skin delivery. Digest J Nanomater Biostruct. 2014;9:83–91.

    Google Scholar 

  37. Chen M, Liu X, Fahr A. Skin penetration and deposition of carboxyfluorescein and temoporfin from different lipid vesicular systems: in vitro study with finite and infinite dosage application. Int J Pharm. 2011;408:223–34.

    CAS  PubMed  Google Scholar 

  38. Clogston JD, Patri AK. Zeta potential measurement. Characterization of nanoparticles intended for drug delivery. 2011. https://doi.org/10.1007/978-1-60327-198-1_6.

  39. Putri DC, Dwiastuti R, Marchaban M, Nugroho AK. Optimization of mixing temperature and sonication duration in liposome preparation. J Pharm Sci Commun. 2017;14:79–85.

    Google Scholar 

  40. Hao Y, Zhao F, Li N, Yang Y, Li K. Studies on a high encapsulation of colchicine by a noisome system. Int J Pharm. 2002;244:73–80.

    CAS  PubMed  Google Scholar 

  41. Barauskas J, Johnsson M, Tiberg F. Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett. 2005;5:1615–9.

    CAS  PubMed  Google Scholar 

  42. Jin X, Zhang ZH, Li SL, Sun E, Tan XB, Song J, et al. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption. Fitoterapia. 2013;84:64–71.

    CAS  PubMed  Google Scholar 

  43. Dictionary of Organic Compounds, 5th ed., 2, p. 1270.

  44. Abd E, Yousef SA, Pastore MN, Telaprolu K, Mohammed YH, Namjoshi S, et al. Skin models for the testing of transdermal drugs. Clin Pharmacol. 2016;8:163–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59:1152–61.

    CAS  PubMed  Google Scholar 

  46. El Maghraby GM. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: effects of cosurfactants. Int J Pharm. 2008;355:285–92.

    PubMed  Google Scholar 

  47. Kakkar R, Rekha R, Kumar DN, Sanju N. Formulation and characterization of vaslartan proniosomes. Maejo Int J Sci Technol. 2011;5(1):146–58.

    CAS  Google Scholar 

  48. Pandey A, Mittal A, Chauhan N, Alam S. Role of surfactants as penetration enhancer in transdermal drug delivery system. J Mol Pharm Org Process Res. 2014;2:113.

    Google Scholar 

  49. Honary S, Zahir F. Effect of zeta potential on the properties of nano-drug delivery systems - a review (part 1). Trop J Pharm Res. 2013;12(2):255–64.

    Google Scholar 

  50. Hoeller S, Sperger A, Valenta C. Lecithin based nanoemulsions: a comparative study of the influence of non-ionic surfactants and the cationic phytosphingosine on physicochemical behaviour and skin permeation. Int J Pharm. 2009;370:181–6.

    CAS  PubMed  Google Scholar 

  51. Schmid-Wendtner MH, Korting HC. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol Physiol. 2006;19:296–302.

    PubMed  Google Scholar 

  52. Jain A, Deveda P, Vyas N, Chauhan J, Khambete H, Jain S. Development of antifungal emulsion based gel for topical fungal infections. Int J Pharm Res Dev. 2011;2:784–90.

    Google Scholar 

  53. Raymond CR, Paul JS, Marian EQ. Hand book of pharmaceutical Excipients. 6th ed. London, Chicago: Pharmaceutical press; 2009. p. 110–4.

    Google Scholar 

  54. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22:2163–73.

    CAS  PubMed  Google Scholar 

  55. Sherif S, Bendas ER, Badawy S. The clinical efficacy of cosmeceutical application of liquid crystalline nanostructured dispersions of alpha lipoic acid as anti-wrinkle. Eur J Pharm Biopharm. 2014;86:251–9.

    CAS  PubMed  Google Scholar 

  56. Hundekar YR, Saboji JK, Patil SM, Nanjwade BK. Preparation and evaluation of diclofenac sodium cubosomes for percutaneous administration. Wjpps. 2014;3:523–39.

    Google Scholar 

  57. Yapar EA, Ynal O. Poly (ethylene oxide)–poly (propylene oxide)-based copolymers for transdermal drug delivery: an overview. Trop J Pharm Res. 2012;11:855–66.

    CAS  Google Scholar 

  58. Lopes LB, Speretta FF, Bentley MV. Enhancement of skin penetration of vitamin K using monoolein-based liquid crystalline systems. Eur J Pharm Sci. 2007;32:209–15.

    CAS  PubMed  Google Scholar 

  59. Kwon TK, Hong SK, Kim JC. In vitro skin permeation of cubosomes containing triclosan. Ind Eng Chem Res. 2012;18:563–7.

    CAS  Google Scholar 

  60. Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol. 2012;64:1560–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hi Pharm for Manufacturing Pharmaceuticals and Chemicals and Yohanna Bassily (Vice Chairman, Hi Pharm, Egypt) for their enormous support and providing the needed time frame. The authors would like to thank Dr. Hassan Elshimy, (Department of Physics, Faculty of Science, Ain Shams University) for his great discussion and effort regarding XRD results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Nasr.

Ethics declarations

All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasr, M., Younes, H. & Abdel-Rashid, R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. and Transl. Res. 10, 1302–1313 (2020). https://doi.org/10.1007/s13346-020-00785-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00785-6

Keywords

Navigation