Skip to main content
Log in

Numerical simulation of hot embossing filling stage using a viscoelastic constitutive model

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

A finite element analysis system is developed to investigate the viscoelastic deformation of polymer during hot embossing process, employing a nonlinear viscoelastic model as a polymer constitutive model. The interface between air and polymer is captured by a level set method. The viscoelastic flow problem is solved using a discrete elastic-viscous stress splitting (DEVSS) formulation along with a matrix logarithm of the conformation tensor. A discontinuous Galerkin formulation is employed to treat convective problems. The developed method is applied to the filling stage of hot embossing for a two-dimensional cavity. The details of the polymer viscoelastic deformation are investigated in terms of the conformation tensor distribution at the end of the embossing. The embossing speed and the cavity aspect ratio are found to have significant effects on the polymer conformation development in the molded part. As for the difference in filling pattern between the Newtonian viscous fluid and the viscoelastic fluid, the difference grows with time, but not significant in the particular geometry and processing conditions chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arora, A., G. Simone, G. B. Salieb-Beugelaar, J. T. Kim, and A. Manz, 2010, Latest developments in micro total analysis systems, Anal. Chem. 82 4830–4847.

    Article  CAS  Google Scholar 

  • Becker, H. and U. Heim, 2000, Hot embossing as a method for the fabrication of polymer high aspect ratio structures, Sensors and Actuators 83 130–135.

    Article  Google Scholar 

  • Fattal, R. and R. Kupferman, 2004, Constitutive laws for the matrix-logarithm of the conformation tensor, J. Non-Newtonian Fluid Mech. 123 281–285.

    Article  CAS  Google Scholar 

  • Fortin, M. and A. Fortin, 1989, A new approach for the FEM simulation of viscoelastic flows, J. Non-Newtonian Fluid Mech. 32 295–310.

    Article  CAS  Google Scholar 

  • Guénette, R. and M. Fortin, 1995, A new mixed finite element method for computing viscoelastic flows, J. Non-Newtonian Fluid Mech. 60 27–52.

    Article  Google Scholar 

  • Haagh, G. A. A. V. and F. N. van De Vosse, 1998, Simulation of three-dimensional polymer mould filling processes using a pseudo-concentration method, Int. J. Numer. Meth. Fluids 28 1355–1369.

    Article  Google Scholar 

  • He, Y., J. Z. Fu and Z. C. Chen, 2007, Research on optimization of the hot embossing process, J. Micromech. Microeng. 17 2420–2425.

    Article  Google Scholar 

  • Heckele, M., W. Bacher, and K. D. Müller, 1998, Hot embossing — The molding technique for plastic microstructures, Microsyst. Technol. 4 122–124.

    Article  Google Scholar 

  • Heckele, M. and W. K. Schomburg, 2004, Review on micro molding of thermoplastic polymers, J. Micromech. Microeng. 14 R1–R14

    Article  CAS  Google Scholar 

  • Hirt, C. W., A. A. Amsden, and J. L. Cook, 1997, An arbitrary lagrangian-eulerian computing method for all flow speeds, J. Comput. Phys. 135 203–216.

    Article  Google Scholar 

  • HSL, 2011, A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk.

  • Hulsen, M. A., R. Fattal, and R. Kupferman, 2005, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: Stabilized simulations using matrix logarithms, J. Non-Newtonian Fluid Mech. 127 27–39.

    Article  CAS  Google Scholar 

  • Juang, Y. J., J. Lee, and K. W. Koelling, 2002, Hot embossing in microfabrication. Part II: Rheological characterization and process analysis, Polym. Eng. Sci. 42 551–566.

    Article  CAS  Google Scholar 

  • Kang, T. G. and T. H. Kwon, 2007, Numerical investigation of hot embossing filling characteristics, Int. Polym. Process. 22 266–275.

    CAS  Google Scholar 

  • Park, J. M., N. H. Kim, B.-K. Lee, K.-H. Lee, and T. H. Kwon, 2008, Nickel stamp fabrication and hot embossing for massproduction of micro/nano combined structures using anodic aluminum oxide, Microsyst. Technol. 14 1689–1694.

    Article  CAS  Google Scholar 

  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992, Numerical recipes in FORTRAN 77: the art of scientific computing, Cambridge University Press.

  • Sussman, M., P. Smereka, and S. Osher, 1994, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys. 114 146–159.

    Article  Google Scholar 

  • Taylor, H, Y. C. Lam, and D. Boning, 2009, A computationally simple method for simulating the micro-embossing of thermoplastic layers, J. Micromech. Microeng. 19 075007.

    Article  Google Scholar 

  • Worgull, M. and M. Heckele, 2004, New aspects of simulation in hot embossing, Microsyst. Technol. 10 432–437.

    Article  Google Scholar 

  • Worgull, M., J. F. Hétu, K. K. Kabanemi, and M. Heckele, 2006, Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication, Microsyst. Technol. 12 947–952.

    Article  CAS  Google Scholar 

  • Yao, D., V. L. Virupaksha, and B. Kim, 2005, Study on squeezing flow during nonisothermal embossing of polymer microstructures, Polym. Eng. Sci. 45 652–660.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae Gon Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.M., Kang, T.G. & Park, S.J. Numerical simulation of hot embossing filling stage using a viscoelastic constitutive model. Korea-Aust. Rheol. J. 23, 139–146 (2011). https://doi.org/10.1007/s13367-011-0017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-011-0017-3

Keywords

Navigation