Skip to main content
Log in

On the yield stress of complex materials

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In the present work, the yield stress of complex materials is analyzed and modeled using the Bautista-Manero-Puig (BMP) constitutive equation, consisting of the upper-convected Maxwell equation coupled to a kinetic equation to account for the breakdown and reformation of the fluid structure. BMP model predictions for a complex fluid in different flow situations are analyzed and compared with yield stress predictions of other rheological models, and with experiments on fluids that exhibit yield stresses. It is shown that one of the main features of the BMP model is that it predicts a real yield stress (elastic solid or Hookean behavior) as one of the material parameters, the zero shear-rate fluidity, is zero. In addition, the transition to fluid-like behavior is continuous, as opposed to predictions of more empirical models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdali, S.S., E. Mitsoulis and N.C. Markatos, 1992, Entry and exit flows of Bingham fluids, J. Rheol. 36, 389–407.

    Article  CAS  Google Scholar 

  • Barnes, H.A., 1999, The yield stress-a review -everything flows? J. Non-Newtonian Fluid Mech. 81, 133–178.

    Article  CAS  Google Scholar 

  • Bautista, F., J.M. De Santos, J.E. Puig and O. Manero, 1999, Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. The model, J Non-Newton Fluid Mech. 80, 93–113.

    Article  CAS  Google Scholar 

  • Bingham, E.C., 1922, Fluidity and Plasticity, McGraw-Hill, New York.

    Google Scholar 

  • Calderas, F., 2012, Reología en flujo transitorio de la mezcla de nanocompuestos Pet-Pen-Montmorillonita, Ph.D. thesis, División de estudios de Posgrado de la Facultad de Química, Universidad Nacional Autónoma de México, México.

    Google Scholar 

  • Calderas, F., A. Sánchez-Solís, A. Maciel and O. Manero, 2009, The transient flow of the PEN-Montmorillonite clay Nanocomposite, Macromol Symp. 283–284, 354–360.

    Article  Google Scholar 

  • Casson, N., 1959, A flow equation for pigment oil suspensions of printing type ink, in Rheology of disperse System, Mill, C.C. (ed.), Pergamon Press, Oxford.

    Google Scholar 

  • Caton, F., C. Baravian, 2008, Plastic behavior of some yield stress fluids: from creep to long-time yield, Rheol. Acta 47, 601–607.

    Article  CAS  Google Scholar 

  • Cheng, D.C.H., 1985, Yield stress: a time-dependent property and how to measure it, Report No. LR 540 (MH), Warren Spring Laboratory, Department of Industry, UK.

    Google Scholar 

  • Evans, I.D., 1992, Letter to the editor: on the nature of the yield stress, J. Rheol. 36, 1313–1316.

    Article  Google Scholar 

  • García-Rojas, B., F. Bautista, J.E. Puig and O. Manero, 2009, Thermodynamic approach to rheology complex fluids: Flowconcentration coupling, Phys. Rev E. 80, 036313/1–036313-12.

    Article  Google Scholar 

  • Herrera, E.E., F. Calderas, F., A.E. Chavez and O. Manero, 2010, Study of the pulsating flow of a worm-like micellar solution, J. Non-Newtonian Fluid Mech. 165, 174–183.

    Article  CAS  Google Scholar 

  • Herrera, E.E., F. Calderas, A.E., Chávez, O. Manero and B. Mena, 2009, Effect of random longitudinal vibration pipe on the Poiseuille-flow of a complex liquid, Rheol. Acta 48, 779–800.

    Article  CAS  Google Scholar 

  • Herschel, W.H., and T. Bulkley, 1926, Measurement of consistency as applied to rubber-benzene solutions, Am. Soc. Test Proc. 26, 621–633.

    Google Scholar 

  • Houlsby, G.T. and A.M. Puzrin, 2002, Rate-dependent plasticity models derived from potential functions, J. Rheol. 46, 113–126.

    Article  CAS  Google Scholar 

  • Isayev, A. and X. Fan, 1990, Viscoelastic plastic constitutive equation for flow of particle filled polymers, J. Rheol. 34, 35–54.

    Article  Google Scholar 

  • Lipscomb, G.G., and M.M. Denn, 1984, Flow of Bingham fluids in complex geometries, J. Non-Newton Fluid Mech. 14, 337–346.

    Article  CAS  Google Scholar 

  • Oldroyd, J.G., 1947, A rational formulation of the equation of plastic flow for a Bingham solid, Proc. Camb. Phil. Soc. 43, 100–105.

    Article  CAS  Google Scholar 

  • Oldroyd, J.G., 1950, On the formulation of rheological equation of state, Proc. Roy. Soc. Lond. A, 200, 525–541.

    Google Scholar 

  • Papanastasiou, T.C., 1987, Flows of materials with yield, J. Rheol, 31, 385–404.

    Article  CAS  Google Scholar 

  • Saramito, P., 2007, A new constitutive equations for elastoviscoplastic fluid flows, J. Non-Newton Fluid Mech. 145, 1–14.

    Article  CAS  Google Scholar 

  • Saramito, P., 2009, A new elastoviscoplastic model based on the Herschel-Bulkley viscoplastic model, J. Non-Newton Fluid Mech. 158, 154–161.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Calderas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderas, F., Herrera-Valencia, E.E., Sanchez-Solis, A. et al. On the yield stress of complex materials. Korea-Aust. Rheol. J. 25, 233–242 (2013). https://doi.org/10.1007/s13367-013-0024-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-013-0024-7

Keywords

Navigation