Skip to main content
Log in

The effect of chain stiffness on moisture diffusion in polymer hydrogel by applying obstruction-scaling model

  • Short Communication
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

In order to understand the moisture diffusion, we combine the obstruction-scaling model with the moisture clustering in confined spaces of the polymer hydrogel, with relevance to the performance of the super desiccant polymer. Special attention is focused on elucidating the effect of chain stiffness by considering the conformation of polymer chain on the basis of polymer physics. Relevant parameters for calculations are determined from literature information as well as the best fits for reported data performed with the copolymer. Our results exhibit the moisture diffusion decreases with increasing chain stiffness represented by the persistence length. Note that the larger persistence length provides smaller radius of openings in void spaces, resulting in the stronger hindrance effect on the moisture diffusion. Higher temperature makes the water molecules to be easier to form clusters, which provides the decrease in diffusivity. The increase of moisture diffusion at low humidity is attributed to the swelling of the chain, whereas its decrease at high humidity results from the water clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amsden, B., 1999, An obstruction-scaling model for diffusion in homogeneous hydrogels, Macromolecules 32, 874.

    Article  CAS  Google Scholar 

  • Amsden, B., K. Grotheer, and D. Angl, 2002, Influence of polymer ionization degree on solute diffusion in polyelectrolyte gels, Macromolecules 35, 3179.

    Article  CAS  Google Scholar 

  • Bohdanecky, M., V. Petrus, and B. Sedlacek, 1983, Estimation of the characteristic ratio of polyacrylamide in water and in a mixed theta-solvent, Makromol. Chem. 184, 2061.

    Article  CAS  Google Scholar 

  • Brandrup, J., E.H. Immergut, and E.A. Grulke, 2004, Polymer Handbook, 4th Ed., Wiley, New York.

    Google Scholar 

  • Clague, D.S. and R.J. Phillips, 1996, Hindered diffusion of spherical macromolecules through dilute fibrous media, Phys. Fluids 8, 1720.

    Article  CAS  Google Scholar 

  • Cukier, R.I., 1984, Diffusion of brownian spheres in semidilute polymer-solutions, Macromolecules 17, 252.

    Article  CAS  Google Scholar 

  • Dean, J.A. (Ed.), 1999, Lange’s Handbook of Chemistry, 15th Ed., McGraw-Hill, New York.

    Google Scholar 

  • Gouanve, F., S. Marais, A. Bessadok, D. Langevin, and M. Metayer, 2007, Kinetics of water sorption in flax and PET fibers, Eur. Polym. J. 43, 586.

    Article  CAS  Google Scholar 

  • Gudeman, L.F. and N.A. Peppas, 1995, Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid), J. Appl. Polym. Sci. 55, 919.

    Article  CAS  Google Scholar 

  • Koch, D.L. and J.F. Brady, 1986, The effective diffusivity of fibrous media, AIChE J. 32, 575.

    Article  CAS  Google Scholar 

  • Larson, R.G., 1999, The Structure and Rheology of Complex Fluids, Oxford Univ. Press, New York.

    Google Scholar 

  • Lee, J. and D.-Y. Lee, 2012, Sorption characteristics of a novel polymeric desiccant, Int. J. Refrig. 35, 940.

    Google Scholar 

  • Ogston, A.G., 1958, The spaces in a uniform random suspension of fibres, Trans. Faraday Soc. 54, 1754.

    Article  Google Scholar 

  • Ogston, A.G., B.N. Preston, and J.D. Wells, 1973, Transport of compact particles through solutions of chain-polymers, Proc. Roy. Soc. (London), Ser. A 333, 297.

    Article  CAS  Google Scholar 

  • Okay, O. and S.B. Sariisik, 2000, Swelling behavior of poly(acrylamide-co-sodium acrylate) hydrogels in aqueous salt solutions: theory versus experiments, Eur. Polym. J. 36, 393.

    Article  CAS  Google Scholar 

  • Park, G.S., 1986, Transport principle — solution, diffusion, and permeation in polymer membranes; P.M. Bungay et al. (Eds.), Synthetic Membranes: Science, Engineering and Applications, Holland, Reidel.

    Google Scholar 

  • Peleg, M., 1993, Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms, J. Food Process Eng. 16, 21.

    Article  Google Scholar 

  • Phillips, R.J., W.M. Deen, and J.F. Brady, 1990, Hindered transport in fibrous membranes and gels — effect of solute size and fiber configuration, J. Colloid Interf. Sci. 139, 363.

    Article  CAS  Google Scholar 

  • Skouri, R., F. Schosseler, J.P. Munch, and S.J. Candau, 1995, Swelling and elastic properties of polyelectrolyte gels, Macromolecules 28, 197.

    Article  CAS  Google Scholar 

  • Starkweather, H.W., 1963, Clustering of water in polymers, J. Polym. Sci. Part B: Polym. Lett. 1, 133.

    Article  CAS  Google Scholar 

  • Timmermann, E.O., 2003, Multilayer sorption parameters: BET or GAB values? Colloids Surf. A 220, 235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung-Suk Chun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Chun, MS. The effect of chain stiffness on moisture diffusion in polymer hydrogel by applying obstruction-scaling model. Korea-Aust. Rheol. J. 25, 267–271 (2013). https://doi.org/10.1007/s13367-013-0027-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-013-0027-4

Keywords

Navigation