Skip to main content
Log in

Effect of cholesterol and triglycerides levels on the rheological behavior of human blood

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Important public health problems worldwide such as obesity, diabetes, hyperlipidemia and coronary diseases are quite common. These problems arise from numerous factors, such as hyper-caloric diets, sedentary habits and other epigenetic factors. With respect to Mexico, the population reference values of total cholesterol in plasma are around 200 mg/dL. However, a large proportion has higher levels than this reference value. In this work, we analyze the rheological properties of human blood obtained from 20 donors, as a function of cholesterol and triglyceride levels, upon a protocol previously approved by the health authorities. Samples with high and low cholesterol and triglyceride levels were selected and analyzed by simple-continuous and linear-oscillatory shear flow. Rheometric properties were measured and related to the structure and composition of human blood. In addition, rheometric data were modeled by using several constitutive equations: Bautista-Manero-Puig (BMP) and the multimodal Maxwell equations to predict the flow behavior of human blood. Finally, a comparison was made among various models, namely, the BMP, Carreau and Quemada equations for simple shear rate flow. An important relationship was found between cholesterol, triglycerides and the structure of human blood. Results show that blood with high cholesterol levels (400 mg/dL) has flow properties fully different (higher viscosity and a more pseudo-plastic behavior) than blood with lower levels of cholesterol (tendency to Newtonian behavior or viscosity plateau at low shear rates).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acierno, D., F.P. La Mantia, G. Marrucci, and G. Titomanlio, 1976, A non-linear viscoelastic model with structure-dependent relaxation times: I. Basic formulation, J. Non-Newton. Fluid 1, 125–146.

    Article  Google Scholar 

  • Bautista, F., J.M. de Santos, J.E. Puig, and O. Manero, 1999, Understanding thixotropic and antithixotropic behavior of viscoelastic micellar solutions and liquid crystalline dispersions. I. The model, J. Non-Newton. Fluid 80, 93–113.

    Article  Google Scholar 

  • Bautista, F., J.F.A. Soltero, J.H. Pérez-López, J.E. Puig, and O. Manero, 2000, On the shear banding flow of elongated micellar solutions, J. Non-Newton. Fluid 94, 57–66.

    Article  Google Scholar 

  • Bautista, F., J.F.A. Soltero, E.R. Macias, and O. Manero, 2002, On the shear banding flow of wormlike micelles, J. Phys. Chem. B 106, 13018–13026.

    Article  Google Scholar 

  • Baskurt, O.K. and H.J. Meiselman, 2013, Erythrocyte aggregation: Basic aspects and clinical importance, Clin. Hemorheol. Micro. 53, 23–37.

    Google Scholar 

  • Bäumler, H., E. Donath, A. Krabi, W. Knippel, A. Budde, and H. Kiesewetter, 1996, Electrophoresis of human red blood cells and platelets. Evidence for depletion of dextran, Biorheology 33, 333–351.

    Article  Google Scholar 

  • Brooks, D.E., 1973, The effect of neutral polymers on the electrokinetic potential of cells and other charged particles: III. Experimental studies on the dextran/erythrocyte system, J. Colloid Interf. Sci. 43, 700–713.

    Article  Google Scholar 

  • Brooks, D.E., 1988, Mechanism of red cell aggregation. In Blood Cells, Rheology, and Aging, Springer Berlin Heidelberg, pp. 158–162.

    Chapter  Google Scholar 

  • Calderas, F., A. Sanchez-Solis, A. Maciel, and O. Manero, 2009, The Transient Flow of the PET-PEN-Montmorillonite Clay Nanocomposite, Macromol. Symp. 283, 354–360.

    Article  Google Scholar 

  • Calderas, F., E.E. Herrera-Valencia, A. Sanchez-Solis, O. Manero, L. Medina-Torres, A. Renteria, and G. Sanchez-Olivares, 2013, On the yield stress of complex materials, Korea-Aust. Rheol. J. 25, 233–242.

    Article  Google Scholar 

  • Campo-Deaño, L., R.P. Dullens, D.G. Aarts, F.T. Pinho, and N.S. Oliveira, 2013, Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system, Biomicrofluidics 7, 034102.

    Article  Google Scholar 

  • Caram, Y., F. Bautista, J.E. Puig, and O. Manero, 2006, On the rheological modeling of associative polymers, Rheol. Acta 46, 45–57.

    Article  Google Scholar 

  • Chien, S., R.J. Dellenback, S. Usami, D.A. Burton, P.F. Gustavson, and V. Magazinovic, 1973, Blood volume, hemodynamic, and metabolic changes in hemorrhagic shock in normal and splenectomized dogs, Am. J. Physiol. 225, 866–879.

    Google Scholar 

  • Chien, S. and L.A. Sung, 1987, Physicochemical basis and clinical implications of red cell aggregation, Clin. Hemorheol. 7, 71–91.

    Google Scholar 

  • de Kee, D. and C.F. Chan Man Fong, 1994, Rheological properties of structured fluids, Polym. Eng. Sci. 34, 438–445.

    Article  Google Scholar 

  • Esteridge, B.H., A.P. Reynolds, and N.J. Walters, 2000, Basic Medical Laboratory Techniques, Cengage Learning, pp. 127.

    Google Scholar 

  • Ford, J., 2013, Red blood cell morphology, Int. J. Lab. Hematol. 35, 351–357.

    Article  Google Scholar 

  • Fredrickson, A.G., 1970, A model for the thixotropy of suspensions, AIChE J. 16, 436–441.

    Article  Google Scholar 

  • Giesekus, H., 1966, Die elastizität von flüßigkeiten, Rheol. Acta 5, 29–35.

    Article  Google Scholar 

  • Giesekus, H., 1982, A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility, J. Non-Newton. Fluid 11, 69–109.

    Article  Google Scholar 

  • Giesekus, H., 1984, On configuration-dependent generalized Oldroyd derivatives, J. Non-Newton. Fluid 14, 47–65.

    Article  Google Scholar 

  • Herrera, E.E., F. Calderas, A.E. Chávez, O. Manero, and B. Mena, 2009, Effect of random longitudinal vibrations on the Poiseuille flow of a complex liquid, Rheol. Acta 48, 779–800.

    Article  Google Scholar 

  • Herrera, E.E., F. Calderas, A.E. Chávez, and O. Manero, 2010, Study on the pulsating flow of a worm-like micellar solution, J. Non-Newton. Fluid 165, 174–183.

    Article  Google Scholar 

  • Högman, C.F., 1999, Storage of blood components, Curr. Opin. Hematol. 6, 427–431.

    Article  Google Scholar 

  • Högman, C.F. and H.T. Meryman, 1999, Storage parameters affecting red blood cell survival and function after transfusion, Transfus. Med. Rev. 13, 275–296.

    Article  Google Scholar 

  • Johnston, B.M., P.R. Johnston, S. Corney, and D. Kilpatrick, 2004, Non-Newtonian blood flow in human right coronary arteries: steady state simulations, J. Biomech. 37, 709–720.

    Article  Google Scholar 

  • Jung, J., B.K. Lee, and S. Shin, 2014, Yield shear stress and disaggregating shear stress of human blood, Korea-Aust. Rheol. J. 26, 191–198.

    Article  Google Scholar 

  • Li, R., W. Yu, and C. Zhou, 2006, Rheological characterization of droplet-matrix versus co-continuous morphology, J. Macromol. Sci. B 45, 889–898.

    Article  Google Scholar 

  • Lerman-Garber, I., J.A. Sepulveda-Amor, R. Tapia-Conyer, C. Magos-Lopez, G. Cardoso-Saldana, J. Zamora-Gonzalez, and C. Posadas-Romero, 1993, Cholesterol levels and prevalence of hypercholesterolemia in Mexican children and teenagers, Atherosclerosis 103, 195–203.

    Article  Google Scholar 

  • Longster, G.H., T. Buckley, J. Sikorski, and L.A. Tovey, 1972, Scanning electron microscope studies of red cell morphology, Vox Sang. 22, 161–170.

    Article  Google Scholar 

  • Loffler, H., J. Rastetter, T. Haferlach, and H. Begemann, 2005, Atlas of Clinical Hematology 6th Ed., Springer, pp. 4.

    Google Scholar 

  • Manero, O., F. Bautista, J.F.A. Soltero, and J.E. Puig, 2002, Dynamics of worm-like micelles: the Cox-Merz rule, J. Non-Newton. Fluid 106, 1–15.

    Article  Google Scholar 

  • Marcinkowska-Gapinska, A., J. Gapinski, W. Elikowski, F. Jaroszyk, and L. Kubisz, 2007, Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients, Med. Biol. Eng. Comput. 45, 837–844.

    Article  Google Scholar 

  • Merrill, E.W., C.S. Cheng, and G.A. Pelletier, 1969, Yield stress of normal human blood as a function of endogenous fibrinogen, J. Appl. Physiol. 26, 1–3.

    Google Scholar 

  • Rosenson, R.S., S. Shott, and C.C. Tangney, 2002, Hypertriglyceridemia is associated with an elevated blood viscosity Rosenson: triglycerides and blood viscosity, Atherosclerosis, 161, 433–439.

    Article  Google Scholar 

  • Saldanha, C., J. Loureiro, C. Moreira, and J. Silva, 2011, Behaviour of human erythrocyte aggregation in presence of autologous lipoproteins, Biochem. Res. Int. 2012, 261736.

    Google Scholar 

  • Schmid-Schönbein, H., P. Gaehtgens, and H. Hirsch, 1968, On the shear rate dependence of red cell aggregation in vitro, J. Clin. Invest. 47, 1447–1454.

    Article  Google Scholar 

  • Snabre, P. and P. Mills, 1985, Effect of dextran polymer on glycocalyx structure and cell electrophoretic mobility, Colloid Polym. Sci. 263, 494–500.

    Article  Google Scholar 

  • Solheim, B.G., O. Flesland, J. Seghatchian, and F. Brosstad, 2004, Clinical implications of red blood cell and platelet storage lesions: an overview, Transfus. Apher. Sci. 31, 185–189.

    Article  Google Scholar 

  • Soltero, J.F.A., F. Bautista, J.E. Puig, and O. Manero, 1999, Rheology of cetyltrimethylammonium p-toluenesulfonate-water system. 3. Nonlinear viscoelasticity, Langmuir, 15, 1604–1612.

    Article  Google Scholar 

  • Thurston, G.B., 1972, Viscoelasticity of human blood, Biophys. J. 12, 1205–1217.

    Article  Google Scholar 

  • Thurston, G.B., 1975, Elastic effects in pulsatile blood flow, Microvasc. Res. 9, 145–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fausto Calderas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, L., Calderas, F., Sanchez-Olivares, G. et al. Effect of cholesterol and triglycerides levels on the rheological behavior of human blood. Korea-Aust. Rheol. J. 27, 1–10 (2015). https://doi.org/10.1007/s13367-015-0001-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-015-0001-4

Keywords

Navigation