Skip to main content
Log in

Comparison of rheological behaviors with fumed silica-based shear thickening fluids

  • Articles
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Shear thickening fluids (STFs) of differing compositions were fabricated and characterised in order to observe the effect of varying chemical and material properties on the resultant rheological behavior. Steady shear tests showed that for a given carrier fluid and particle size exists an optimum weight fraction which exhibits optimal shear thickening performance. Testing also showed that increasing particle size resulted in increased shear thickening performance and its onset whilst altering the carrier fluid chemistry has a significant effect on the thickening performance. An explanation is provided connecting the effect of varying particle size, carrier fluid chemistry and weight fraction to the resultant rheological behavior of the STFs. Two STFs were chosen for further testing due to their improved but contrasting rheological behaviors. Both STFs displayed a relationship between steady and dynamic shear conditions via the Modified Cox-Merz rule at high strain amplitudes (γ≥500%). Understanding the effects of particle and liquid polymer chemistry on the shear thickening effect will assist in ‘tailoring’ STFs for certain potential or existing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baird, J.A., R. Olayo-Valles, C. Rinaldi, and L.S. Taylor, 2010, Effect of molecular weight, temperature, and additives on the moisture sorption properties of polyethylene glycol, J. Pharm. Sci. 99, 154–168.

    Article  Google Scholar 

  • Barnes, H.A., 1989, Shear-thickening (“Dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids, J. Rheol. 33, 329–366.

    Article  Google Scholar 

  • Bergenholtz, J., J.F. Brady, and M. Vicic, 2002, The non-Newtonian rheology of dilute colloidal suspensions, J. Fluid Mech. 456, 239–275.

    Article  Google Scholar 

  • Boersma, W.H., J. Laven, and H.N. Stein, 1995, Computer simulations of shear thickening of concentrated dispersions, J. Rheol. 39, 841–860.

    Article  Google Scholar 

  • Chellamuthu, M., E.M. Arndt, and J.P. Rothstein, 2009, Extensional rheology of shear-thickening nanoparticle suspensions, Soft Matter 5, 2117–2124.

    Article  Google Scholar 

  • Durlofsky, L., J.F. Brady, and G. Bossis, 1987, Dynamic simulation of hydrodynamically interacting particles, J. Fluid Mech. 180, 21–49.

    Article  Google Scholar 

  • Fischer, C., C.J.G. Plummer, V. Michaud, P.E. Bourban, and J.A.E. Månson, 2007, Pre- and post-transition behavior of shear-thickening fluids in oscillating shear, Rheol. Acta 46, 1099–1108.

    Article  Google Scholar 

  • Fischer, C., S.A. Braun, P.-E. Bourban, V. Michaud, C.J.G. Plummer, and J.-A.E. Månson, 2006, Dynamic properties of sandwich structures with integrated shear-thickening fluids, Smart Mater. Struct. 15, 1467–1475.

    Article  Google Scholar 

  • Galindo-Rosales, F.J., F.J. Rubio-Hernández, and J.F. Velázquez-Navarro, 2009, Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids, Rheol. Acta 48, 699–708.

    Article  Google Scholar 

  • Gong, X., Y. Xu, W. Zhu, S. Xuan, W. Jiang, and W. Jiang, 2014, Study of the knife stab and puncture-resistant performance for shear thickening fluid enhanced fabric, J. Compos Mater. 48, 641–657.

    Article  Google Scholar 

  • Gun'ko, V.M., I.F. Mironyuk, V.I. Zarko, E.F. Voronin, V.V. Turov, E.M. Pakhlov, E.V. Goncharuk, Y.M. Nychiporuk, N.N. Vlasova, P.P. Gorbik, O.A. Mishchuk, A.A. Chuiko, T.V. Kulik, B.B. Palyanytsya, S.V. Pakhovchishin, J. Skubiszewska-Zieba, W. Janusz, A.V. Turov, and R. Leboda, 2005, Morphology and surface properties of fumed silicas, J. Colloid Interface Sci. 289, 427–445.

    Article  Google Scholar 

  • Hassan, T.A., V.K. Rangari, and S. Jeelani, 2010, Synthesis, processing and characterization of shear thickening fluid (STF) impregnated fabric composites, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527, 2892–2899.

    Article  Google Scholar 

  • He, Q., X. Gong, S, Xuan, W. Jiang, and Q. Chen, 2015, Shear thickening of suspensions of porous silica nanoparticles, J. Mater. Sci. 50, 6041–6049.

    Article  Google Scholar 

  • Hoffman, R.L., 1972, Discontinuous and dilatant viscosity behavior in concentrated suspensions. I. Observation of a flow instability, J. Rheol. 16, 155–173.

    Article  Google Scholar 

  • Hoffman, R.L., 1974, Discontinuous and dilatant viscosity behavior in concentrated suspensions. II. Theory and experimental tests, J. Colloid Interface Sci. 46, 491–506.

    Article  Google Scholar 

  • Jiang, J., Y. Liu, L. Shan, X. Zhang, Y. Meng, H.J. Choi, and Y. Tian, 2014, Shear thinning and shear thickening characteristics in electrorheological fluids, Smart Mater. Struct. 23, 015003.

    Article  Google Scholar 

  • Lee, B.W. and C.G. Kim, 2012, Computational analysis of shear thickening fluid impregnated fabrics subjected to ballistic impacts, Adv. Compos. Mater. 21, 177–192.

    Article  Google Scholar 

  • Lee, J.D., J.H. So, and S.M. Yang, 1999, Rheological behavior and stability of concentrated silica suspensions, J. Rheol. 43, 1117–1140.

    Article  Google Scholar 

  • Lee, Y.S., E.D. Wetzel, and N.J. Wagner, 2003, The ballistic impact characteristics of Kevlar® woven fabrics impregnated with a colloidal shear thickening fluid, J. Mater. Sci. 38, 2825–2833.

    Article  Google Scholar 

  • Li, X., H.L. Cao, S. Gao, F.Y. Pan, L.Q. Weng, S.H. Song, and Y.D. Huang, 2013, Preparation of body armour material of Kevlar fabric treated with colloidal silica nanocomposite, Plast. Rubber Compos. 37, 223–226.

    Article  Google Scholar 

  • Liu, X.-Q., R.-Y. Bao, X.-J. Wu, W. Yang, B.-H. Xie, and M.-B. Yang, 2015, Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid, RSC Adv. 5, 18367–18374.

    Article  Google Scholar 

  • Neagu, R.C., P.E. Bourban, and J.A.E. Månson, 2009, Micromechanics and damping properties of composites integrating shear thickening fluids, Compos. Sci. Technol. 69, 515–522.

    Article  Google Scholar 

  • Peng, G.R., W. Li, T.F. Tian, J. Ding, and M. Nakano, 2014, Experimental and modeling study of viscoelastic behaviors of magneto-rheological shear thickening fluids, Korea-Aust. Rheol. J. 26, 149–158.

    Article  Google Scholar 

  • Petel, O.E., S. Ouellet, J. Loiseau, B.J. Marr, D.L. Frost, and A.J. Higgins, 2013, The effect of particle strength on the ballistic resistance of shear thickening fluids, Appl. Phys. Lett. 102, 064103.

    Article  Google Scholar 

  • Raghavan, S.R. and S.A. Khan, 1997, Shear-thickening response of fumed silica suspensions under steady and oscillatory shear, J. Colloid Interface Sci. 185, 57–67.

    Article  Google Scholar 

  • Raghavan, S.R., H.J. Walls, and S.A. Khan, 2000, Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding, Langmuir 16, 7920–7930.

    Article  Google Scholar 

  • Shan, L., Y. Tian, Y.G. Meng, and X.J. Zhang, 2015, Influences of medium and temperature on the shear thickening behavior of nano fumed silica colloids, Acta Phys. Sin. 64, 068301.

    Google Scholar 

  • Srivastava, A., A. Majumdar, and B.S. Butola, 2012, Improving the impact resistance of textile structures by using shear thickening fluids: a review, Crit. Rev. Solid State Mat. Sci. 37, 115–129.

    Article  Google Scholar 

  • Wang, R. and S.L. Wunder, 2000, Effects of silanol density, distribution, and hydration state of fumed silica on the formation of self-assembled monolayers of n-octadecyltrichlorosilane, Langmuir 16, 5008–5016.

    Article  Google Scholar 

  • Wetzel, E.D., Y.S. Lee, R.G. Egres, K.M. Kirkwood, J.E. Kirkwood, and N.J. Wagner, 2004, The effect of rheological parameters on the ballistic properties of shear thickening fluid (STF)-Kevlar composites, Materials Processing and Design: Modeling, Simulation and Applications NUMIFORM 2004, Columbus, USA, 288–293.

    Google Scholar 

  • Xu, Y.L., X.L Gong, C. Penga, Y.Q. Sun, W.Q Jiang, and Z. Zhang, 2010, Shear thickening fluids based on additives with different concentrations and molecular chain lengths, Chin. J. Chem. Phys. 23, 342–346.

    Article  Google Scholar 

  • Zhang, X., W. Li, and X. Gong, 2010, Thixotropy of MR shearthickening fluids, Smart Mater. Struct. 19, 125012.

    Article  Google Scholar 

  • Zhao, J., H. Cao, X. Li, J. Wan, K. Wang, and J. Zhang, 2012a, Effect of SiO2 particle size on stab resistant properties of STF/Kevlar composites, Acta Mater. Compos. Sin. 29, 54–61.

    Google Scholar 

  • Zhao, J., H. Cao, X. Li, J. Wan, K. Wang, and J. Zhang, 2012b, The stab resistant properties of Kevlar/STF composites, Third International Conference on Smart Materials and Nanotechnology in Engineering, Shenzhen, China, 84091L-84091L-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriana, A.D., Tian, T., Sencadas, V. et al. Comparison of rheological behaviors with fumed silica-based shear thickening fluids. Korea-Aust. Rheol. J. 28, 197–205 (2016). https://doi.org/10.1007/s13367-016-0020-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-016-0020-9

Keywords

Navigation