Skip to main content
Log in

Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution

  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

The effects of polyethylene oxide (PEO) homopolymer on the gelation behavior of a PEO100-PPO65-PEO100 triblock copolymer (Pluronic F127) were explored in aqueous solution under non-isothermal and isothermal conditions. Under non-isothermal conditions (temperature sweep test), two transition points were observed on increasing temperature, that is, at lower and upper gelation temperatures (LTgel and UTgel, respectively). Between LTgel and UTgel, F127 aqueous solutions maintained a hard gel state. Both molecular weight (MW) and PEO concentration affected these two gelation temperatures. In particular, relative molecular weight (MWrel ≡ molecular weight of PEO homopolymer/PEO segment of F127) affected LTgel. LTgel decreased on increasing PEO concentration at MWrel values of <1, but increased on increasing PEO concentration at MWrel values of >1. On the other hand, UTgel decreased with increasing PEO concentration regardless of MWrel. Under isothermal conditions (fixed temperature between LTgel and UTgel), the effects of PEO homopolymer on the mechanical properties of F127 hard gel were systemically investigated using small and large amplitude oscillatory shear tests. In the linear viscoelastic regime, total intra-cycle stress and elastic intra-cycle stress were similar, and viscous response increased on increasing PEO concentration. However, at large strain amplitudes, hard gels showed intra-cycle stiffening but inter-cycle softening behavior. In addition, on increasing PEO concentrations, viscous nonlinearities underwent strain-rate thickening followed by strain-rate thinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandridis, P., J.F. Holzwarth, and T.A. Hatton, 1994a, Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: Thermodynamics of copolymer association, Macromolecules 27, 2414–2425.

    Article  Google Scholar 

  • Alexandridis, P. and T.A. Hatton, 1995, Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling, Colloid Surf. APhysicochem. Eng. Asp. 96, 1–46.

    Article  Google Scholar 

  • Alexandridis, P., V. Athanassiou, S. Fukuda, and T.A. Hatton, 1994b, Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers, Langmuir 10, 2604–2612.

    Article  Google Scholar 

  • Andersson, M. and G. Karlstrom, 1985, Conformational structure of 1,2-dimethoxyethane in water and other dipolar solvents, studied by quantum chemical, reaction field, and statistical mechanical techniques. J. Phys. Chem. 89, 4957–4962.

    Google Scholar 

  • Bahadur, P., P. Li, M. Almgren, and W. Brown, 1992, Effect of potassium fluoride on the micellar behavior of Pluronic F-68 in aqueous solution, Langmuir 8, 1903–1907.

    Article  Google Scholar 

  • Berg, J.C., G.H. Johnson, X. Lepe, and S. Adán-Plaza, 2003, Temperature effects on the rheological properties of current polyether and polysiloxane impression materials during setting, J. Prosthet. Dent. 90, 150–161.

    Article  Google Scholar 

  • Carrier, V. and G. Petekidis, 2009, Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles, J. Rheol. 53, 245–273.

    Article  Google Scholar 

  • Cho, K.S., K. Hyun, K.H. Ahn, and S.J. Lee, 2005, A geometrical interpretation of large amplitude oscillatory shear response, J. Rheol. 49, 747–758.

    Article  Google Scholar 

  • Darvish, K.K. and J.R. Crandall, 2001, Nonlinear viscoelastic effects in oscillatory shear deformation of brain tissue, Med. Eng. Phys. 23, 633–645.

    Article  Google Scholar 

  • de Lima, C.M., S.M.C. Siqueira, A.F.V. de Amorim, K.B.S. Costa, D.H.A. de Brito, M.E.N.P. Ribeiro, N.M.P.S. Ricardo, C. Chaibunditc, S.G. Yeates, and N.M.P.S. Ricardo, 2015, Effects of polypropylene glycol 400 (PPG400) on the micellization and gelation of Pluronic F127, Macromolecules 48, 7978–7982.

    Article  Google Scholar 

  • Dolez, P.I., A. Goff, and B.J. Love, 2002, Settling behavior of specific acrylic particles in Bis-GMA based reactive slurries, Sep. Sci. Technol. 37, 2007–2019.

    Article  Google Scholar 

  • Dumortier, G., J.L. Grossiord, F. Agnely, and J.C. Chaumeil, 2006, A review of poloxamer 407 pharmaceutical and pharmacological characteristics, Pharm. Res. 23, 2709–2728.

    Article  Google Scholar 

  • Eiser, E., F. Molino, G. Porte, and X. Pithon, 2000, Flow in micellar cubic crystals, Rheol. Acta 39, 201–208.

    Article  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2008, New measures for characterizing nonlinear viscoelasticity in large ampli-tude oscillatory shear, J. Rheol. 52, 1427–1458.

    Article  Google Scholar 

  • Ewoldt, R.H., A.E. Hosoi, and G.H. McKinley, 2009, Nonlinear viscoelastic biomaterials: Meaningful characterization and engineering inspiration, Integr. Comp. Biol. 49, 40–50.

    Article  Google Scholar 

  • Feitosa, E., W. Brown, K. Wang, and P.C.A. Barreleiro, 2002, Interaction between poly(ethylene glycol) and C12E8 investigated by dynamic light scattering, time-resolved fluorescence quenching, and calorimetry, Macromolecules 35, 201–207.

    Google Scholar 

  • Feitosa, E., W. Brown, and M.S. Vethamuthu, 1996, Interaction of the nonionic surfactant C12E8 with high molar mass poly(ethylene oxide) studied by dynamic light scattering and fluorescence quenching methods, Langmuir 12, 5985–5991.

    Article  Google Scholar 

  • Fusco, S., A. Borzacchiello, and P.A. Netti, 2006, Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications, J. Bioact. Compat. Polym. 21, 149–164.

    Article  Google Scholar 

  • Gaisford, S., A.E. Beezer, and J.C. Mitchell, 1997, Diode-array UV spectrometric evidence for cooperative interactions in binary mixtures of Pluronics F77, F87, and F127, Langmuir 13, 2606–2607.

    Article  Google Scholar 

  • Gilbert, J.C., J.L. Richardson, M.C. Davies, K.J. Palin, and J. Hadgraft, 1987, The effect of solutes and polymers on the gelation properties of Pluronic F-127 solutions for controlled drug delivery, J. Control. Release 5, 113–118.

    Article  Google Scholar 

  • Glatter, O., G. Scherf, K. Schillén, and W. Brown, 1994, Characterization of a poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (EO27-PO39-EO27) in aqueous solution, Macromolecules 27, 6046–6054.

    Article  Google Scholar 

  • Habas, J.P., E. Pavie, A. Lapp, and J. Peyrelasse, 2004, Understanding the complex rheological behavior of PEO-PPO-PEO copolymers in aqueous solution, J. Rheol. 48, 1–21.

    Article  Google Scholar 

  • Hurter, P.N., J.M.H.M. Scheutjens, and T.A. Hatton, 1993a, Molecular modeling of micelle formation and solubilization in block copolymer micelles. 2. Lattice theory for monomers with internal degrees of freedom, Macromolecules 26, 5030–5040.

    Article  Google Scholar 

  • Hurter, P.N., J.M.H.M. Scheutjens, and T.A. Hatton, 1993b, Molecular modeling of micelle formation and solubilization in block copolymer micelles. 1. A self-consistent mean-field lattice theory, Macromolecules 26, 5592–5601.

    Article  Google Scholar 

  • Hvidt, S., 2013, Yield stress value determinations of a physical gel, Nordic Rheology Conference 2013, Copenhagen, Denmark, 311–314.

    Google Scholar 

  • Hyun, K., J.G. Nam, M. Wilhellm, K.H. Ahn, and S.J. Lee, 2006, Large amplitude oscillatory shear behavior of PEO-PPO-PEO triblock copolymer solutions, Rheol. Acta 45, 239–249.

    Article  Google Scholar 

  • Hyun, K., M. Wilhelm, C.O. Klein, K.S. Cho, J.G. Nam, K.H. Ahn, S.J. Lee, R.H. Ewoldt, and G.H. McKinley, 2011, A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS), Prog. Polym. Sci. 36, 1697–1753.

    Article  Google Scholar 

  • Hyun, K., S.H. Kim, K.H. Ahn, S.J. Lee, 2002, Large amplitude oscillatory shear as a way to classify the complex fluids, J. Non-Newton. Fluid Mech. 107, 51–65.

    Article  Google Scholar 

  • Israkarn, K., P. Hongsprabhas, and P. Hongsprabhas, 2007, Influences of granule-associated proteins on physicochemical properties of mungbean and cassava starches, Carbohydr. Polym. 68, 314–322.

    Article  Google Scholar 

  • Ito, T., M. Yamazaki, and S. Ohnishi, 1989, Poly(ethylene glycol)-induced shrinkage of Sephadex gel. A model system for quantitative analysis of osmoelastic coupling, Biophys. J. 56, 707–711.

    Article  Google Scholar 

  • Jin, N., J.W. Woodcock, C. Xue, T.G. O’Lenick, X. Jiang, S. Jin, M.D. Dadmun, and B. Zhao, 2011, Tuning of thermo-triggered gel-to-sol transition of aqueous solution of multi-responsive diblock copolymer poly(methoxytri(ethylene glycol) acrylateco-acrylic acid)-b-poly(ethoxydi(ethylene glycol) acrylate), Macromolecules 44, 3556–3566.

    Article  Google Scholar 

  • Jørgensen, E.B., S. Hvidt, W. Brown, and K. Schillén, 1997, Effects of salts on the micellization and gelation of a triblock copolymer studied by rheology and light scattering, Macromolecules 30, 2355–2364.

    Article  Google Scholar 

  • Kang, H., Q. Wen, P.A. Janmey, J.X. Tang, E. Conti, and F.C. MacKintosh, 2009, Nonlinear elasticity of stiff filament networks: Strain stiffening, negative normal stress, and filament alignment in fibrin gels, J. Phys. Chem. B 113, 3799–3805.

    Google Scholar 

  • Khandavalli, S. and J.P. Rothstein, 2015, Large amplitude oscillatory shear rheology of three different shear-thickening particle dispersions, Rheol. Acta 54, 601–618.

    Article  Google Scholar 

  • Kostko, A.F., J.L. Harden, and M.A. McHugh, 2009, Dynamic light scattering study of concentrated triblock copolymer micellar solutions under pressure, Macromolecules 42, 5328–5338.

    Article  Google Scholar 

  • Kwon, K.W., M.J. Park, J. Hwang, and K. Char, 2001, Effects of alcohol addition on gelation in aqueous solution of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer, Polym. J. 33, 404–410.

    Article  Google Scholar 

  • Lam, Y.M. and G. Goldbeck-Wood, 2003, Mesoscale simulation of block copolymers in aqueous solution: Parameterisation, micelle growth kinetics and the effect of temperature and concentration morphology, Polymer 44, 3593–3605.

    Google Scholar 

  • Lau, B.K., Q. Wang, W. Sun, and L. Li, 2004, Micellization to gelation of a triblock copolymer in water: Thermoreversibility and scaling, J. Polym. Sci. Pt. B-Polym. Phys. 42, 2014–2025.

    Article  Google Scholar 

  • Li, H., G.E. Yu, C. Price, C. Booth, E. Hecht, and H. Hoffmann, 1997, Concentrated aqueous micellar solutions of diblock copoly(oxyethylene/oxybutylene) E41B8: A study of phase behavior, Macromolecules 30, 1347–1354.

    Article  Google Scholar 

  • Li, X., E.K. Park, K. Hyun, L. Oktavia, and M. Kwak, 2018, Rheological analysis of core-stabilized Pluronic F127 by semiinterpenetrating network (sIPN) in aqueous solution, J. Rheol. 62, 107–120.

    Article  Google Scholar 

  • Lindman, B., A. Carlsson, G. Karlström, and M. Malmsten, 1990, Nonionic polyhers and surfactants -some anomalies in temperature dependence and in interactions with ionic surfactants, Adv. Colloid Interface Sci. 32, 183–203.

    Article  Google Scholar 

  • Linse, P., 1993, Phase behavior of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution, J. Phys. Chem. 97, 13896–13902.

    Article  Google Scholar 

  • Linse, P., 1994, Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymer in aqueous solution: Effect of polymer impurities, Macromolecules 27, 2685–2693.

    Article  Google Scholar 

  • Linse, P. and M. Malmeten, 1992, Temperature-dependent micellization in aqueous block copolymer solutions, Macromolecules 25, 5434–5439.

    Article  Google Scholar 

  • Love, B.J., 2004, Analytical model development for Stokes-type settling in a solidifying fluid, Particul. Sci. Technol. 22, 285–290.

    Article  Google Scholar 

  • Malmsten, M. and B. Lindman, 1993, Effects of homopolymers on the gel formation in aqueous block copolymer solutions, Macromolecules 26, 1282–1286.

    Article  Google Scholar 

  • Mason, T.G. and D.A. Weitz, 1995, Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition, Phys. Rev. Lett. 75, 2770–2773.

    Article  Google Scholar 

  • Mason, T.G., J. Bibette, and D.A. Weitz, 1995, Elasticity of compressed emulsions, Phys. Rev. Lett. 75, 2051–2054.

    Article  Google Scholar 

  • Meznarich, N.A.K. and B.J. Love, 2011, The kinetics of gel formation for PEO-PPO-PEO triblock copolymer solutions and the effects of added methylparaben, Macromolecules 44, 3548–3555.

    Article  Google Scholar 

  • Mortensen, K., 1992, Phase behaviour of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock-copolymer dissolved in water, Europhys. Lett. 19, 599–604.

    Article  Google Scholar 

  • Mortensen, K. and J.S. Pedersen, 1993, Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution, Macromolecules 26, 805–812.

    Article  Google Scholar 

  • Mortensen, K., W. Batsberg, and S. Hvidt, 2008, Effects of PEOPPO diblock impurities on the cubic structure of aqueous PEOPPO-PEO Pluronics micelles: fcc and bcc ordered structures in F127, Macromolecules 41, 1720–1727.

    Article  Google Scholar 

  • Mortensen, K., W. Brown, and E. Jørgensen, 1995, Lamellar mesophase of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) melts and water-swollen mixtures, Macromolecules 28, 1458–1463.

    Article  Google Scholar 

  • Ng, T.S.K., G.H. McKinley, and R.H. Ewoldt, 2011, Large amplitude oscillatory shear flow of gluten dough: A model powerlaw gel, J. Rheol. 55, 627–654.

    Article  Google Scholar 

  • Park, M.J. and K. Char, 2002, Two gel states of a PEO-PPO-PEO triblock copolymer formed by different mechanisms, Macromol. Rapid Commun. 23, 688–692.

    Article  Google Scholar 

  • Perry, C.C., T.S. Sabir, W.J. Livingston, J.R. Milligan, Q. Chen, V. Maskiewicz, and D.S. Boskovic, 2011, Fluorescence of commercial Pluronic F127 samples: Temperature-dependent micellization, J. Colloid Interface Sci. 354, 662–669.

    Article  Google Scholar 

  • Philippoff, W., 1966, Vibrational measurements with large amplitudes, Trans. Soc. Rheol. 10, 317–334.

    Article  Google Scholar 

  • Piguet-Ruinet, F. and B.J. Love, 2008, Dynamic photorheological analysis of photopolymerizable urethane dimethacrylate resins with varying diluent content and light fluence, J. Appl. Polym. Sci. 107, 1523–1529.

    Article  Google Scholar 

  • Pragatheeswaran, A.M. and S.B. Chen, 2013, Effect of chain length of PEO on the gelation and micellization of the Pluronic F127 copolymer aqueous system, Langmuir 29, 9694–9701.

    Article  Google Scholar 

  • Prud’homme, R.K., G. Wu, and D.K. Schneider, 1996, Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution, Langmuir 12, 4651–4659.

    Article  Google Scholar 

  • Ramos, L., F. Molino, and G. Porte, 2000, Shear melting in lyotropic hexagonal phases, Langmuir 16, 5846–5848.

    Article  Google Scholar 

  • Ricardo, N.M.P.S., N.M.P.S. Ricardo, F.M.L.L. Costa, F.W.A. Bezerra, C. Chaibundit, D. Hermida-Merino, B.W. Greenland, S. Burattini, I.W. Hamley, S.K. Nixon, and S.G. Yeates, 2012, Effect of water-soluble polymers, polyethylene glycol and poly(vinylpyrrolidone), on the gelation of aqueous micellar solutions of Pluronic copolymer F127, J. Colloid Interface Sci. 368, 336–341.

    Google Scholar 

  • Rogers, S.A. and M.P. Lettinga, 2012, A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models, J. Rheol. 56, 1–25.

    Article  Google Scholar 

  • Rouyer, F., S. Cohen-Addad, R. Höhler, P. Sollichm, and S.M. Fielding, 2008, The large amplitude oscillatory strain response of aqueous foam: Strain localization and full stress Fourier spectrum, Eur. Phys. J. E 27, 309–321.

    Article  Google Scholar 

  • Schmolka, I.R., 1972, Artificial skin I. Preparation and properties of Pluronic F-127 gels for treatment of burns, J. Biomed. Mater. Res. 6, 571–582.

    Article  Google Scholar 

  • Semmrich, C., R.J. Larsen, and A.R. Bausch, 2008, Nonlinear mechanics of entangled F-actin solutions, Soft Matter 4, 1675–1680.

    Article  Google Scholar 

  • Singh, P. and S. Pandey, 2007, Solute-solvent interactions within aqueous poly(ethylene glycol): Solvatochromic probes for empirical determination and preferential solvation, Green Chem. 9, 254–261.

    Article  Google Scholar 

  • Song, M.J., D.S. Lee, J.H. Ahn, D.J. Kim, and S.C. Kim, 2000, Dielectric behavior during sol-gel transition of PEO-PPO-PEO triblock copolymer aqueous solution, Polym. Bull. 43, 497–504.

    Article  Google Scholar 

  • Sun, W.X., L.Z. Huang, Y.R. Yang, X.X. Liu, and Z. Tong, 2015, Large amplitude oscillatory shear studies on the strain-stiffening behavior of gelatin gels, Chin. J. Polym. Sci. 33, 70–83.

    Article  Google Scholar 

  • Wanka, G., H. Hoffmann, and W. Ulbricht, 1994, Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions, Macromolecules 27, 4145–4159.

    Article  Google Scholar 

  • Wilhelm, M., 2002, Fourier-transform rheology, Macromol. Mater. Eng. 287, 83–105.

    Article  Google Scholar 

  • Wilhelm, M., P. Reinheimer, and M. Ortseifer, 1999, High sensitivity Fourier-transform rheology, Rheol. Acta 38, 349–356.

    Article  Google Scholar 

  • Willenbacher, N., 1996, Unusual thixotropic properties of aqueous dispersions of Laponite RD, J. Colloid Interface Sci. 182, 501–510.

    Article  Google Scholar 

  • Wu, G., B. Chu, and D.K. Schneider, 1995, SANS study of the micellar structure of PEO/PPO/PEO aqueous solution, J. Phys. Chem. 99, 5094–5101.

    Article  Google Scholar 

  • Zaccarelli, E., 2007, Colloidal gels: Equilibrium and non-equilibrium routes, J. Phys.: Condens. Matter 19, 323101.

    Google Scholar 

  • Zhou, L., L.P. Cook, and G.H. McKinley, 2010, Probing shearbanding transitions of the VCM model for entangled wormlike micellar solutions using large amplitude oscillatory shear (LAOS) deformations, J. Non-Newton. Fluid Mech. 165, 1462–1472.

    Article  Google Scholar 

  • Zhou, Z. and B. Chu, 1994, Phase behavior and association properties of poly(oxypropylene)-poly(oxyethylene)-poly(oxypropylene) triblock copolymer in aqueous solution, Macromolecules 27, 2025–2033.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Hyun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Hyun, K. Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution. Korea-Aust. Rheol. J. 30, 109–125 (2018). https://doi.org/10.1007/s13367-018-0012-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-018-0012-z

Keywords

Navigation