Skip to main content
Log in

Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper is concerned with the application of artificial neural networks (ANNs) and regression analysis for the performance prediction of diamond sawblades in rock sawing. A particular hard rock (granitic) is sawn by diamond sawblades, and specific energy (SE) is considered as a performance criterion. Operating variables namely peripheral speed (V p), traverse speed (V c) and cutting depth (d) are varied at four levels for obtaining different results for the SE. Using the experimental results, the SE is modeled using ANN and regression analysis based on the operating variables. The developed models are then tested and compared using a test data set which is not utilized during construction of models. The regression model is also validated using various statistical approaches. The results reveal that both modeling approaches are capable of giving adequate prediction for the SE with an acceptable accuracy level. Additionally, the compared results show that the corresponding ANN model is more reliable than the regression model for the prediction of the SE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F h :

Horizontal force (N)

F v :

Vertical force (N)

F z :

Axial force (N)

F n :

Normal force (N)

F t :

Tangential force (N)

F c :

Cutting force (N)

D s :

Disc diameter (mm)

W :

Width of the sawblade segments

d :

Cutting depth (mm)

V c :

Traverse speed (m/s)

V p :

Peripheral speed (m/s)

Q f :

Flow rate of cooling fluid (ml/s)

φ :

The total included angle of the contact zone (degrees) and

:

The angle showing the location of the resultant force (degrees)

F c :

Cutting force (N)

SE:

Specific energy (kN/mm3)

RM:

Regression models

MRA:

Multiple linear regression analysis

ANNs:

Artificial neural networks

References

  1. Hojamberdiev M., Eminov A., Xu Y.: Utilization of muscovite granite waste in the manufacture of ceramic tiles. Ceram. Int. 37, 871–876 (2011)

    Article  Google Scholar 

  2. Luo S.Y.: Investigation of the worn surfaces of diamond sawblades in sawing granite. J. Mater. Process. Technol. 70, 1–8 (1997)

    Article  Google Scholar 

  3. Xu X.: Study on the thermal wear of diamond segmented tools in circular sawing of granites. Tribol. Lett. 10(4), 245–250 (2001)

    Article  Google Scholar 

  4. Konstanty J.: Theoretical analysis of stone sawing with diamonds. J. Mater. Process. Technol. 123, 146–154 (2011)

    Article  Google Scholar 

  5. Lan S., Jinsheng P., Changjian L.: A new approach to improve the performance of diamond sawblades. Mater. Lett. 57, 1010–1014 (2002)

    Article  Google Scholar 

  6. Wang C.Y., Clausen R.: Marble cutting with single point cutting tool and diamond segments. Int. J. Mach. Tools Manuf. 42, 1045–1054 (2002)

    Article  Google Scholar 

  7. Xu X., Li Y., Zeng W.Y., Li L.B.: Quantitative analysis of the loads acting on the abrasive grits in the diamond saving of granites. J. Mater. Process. Technol. 129, 50–55 (2002)

    Article  Google Scholar 

  8. Eyuboglu S.A., Ozcelik Y., Kulaksiz S., Engin C.I.: Statistical and microscopic investigation of disc segment wear related to sawing Ankara andesites. Int. J. Rock Mech. Min. 40, 405–414 (2003)

    Article  Google Scholar 

  9. Ersoy A., Atıcı U.: Performance characteristics of circular diamond saws in cutting different types of rocks. Diam. Relat. Mater. 13, 22–37 (2004)

    Article  Google Scholar 

  10. Kahraman S., Fener M., Günaydın O.: Predicting the sawability of carbonate rocks using multiple curvilinear regresion analysis. Int. J. Rock Mech. Min. 41, 1123–1131 (2004)

    Article  Google Scholar 

  11. Ersoy A., Buyuksagis S., Atici U.: Wear characteristics of circular diamond saws in the cutting of different hard abrasive rocks. Wear 258(9), 1422–1436 (2005)

    Article  Google Scholar 

  12. Luo S.Y., Liao Y.S.: Study of the behavior of diamond sawblades in stone processing. J. Mater. Process. Technol. 51, 296–308 (1995)

    Article  Google Scholar 

  13. Buyuksagis I.S., Goktan R.M.: Investigation of marble machining performance using an instrumented block-cutter. J. Mater. Process. Technol. 69, 258–262 (2005)

    Article  Google Scholar 

  14. Xipeng X., Yiging Y.: Sawing performance of diamond with alloy coatings. Surf. Coat. Technol. 198, 459–463 (2005)

    Article  Google Scholar 

  15. Delgado S.N., Rodríguez-Rey A., Suárezdel Río M.L., Díez Sarriá I., Calleja L., Ruizde Argandoña G.V.: The ifluence of rock microhardness on the sawability of pink porrino granite (Spain). Int. J. Rock Mech. Min. 42, 161–166 (2005)

    Article  Google Scholar 

  16. Buyuksagis I.S.: Effect of cutting mode on the sawability of granites using segmented circular diamond sawblade. J. Mater. Process. Technol. 183, 399–406 (2007)

    Article  Google Scholar 

  17. Fener M., Kahraman S., Özder M.O.: Performance prediction of circular diamond saws from mechanical rock properties in cutting carbonate rocks. Rock Mech. Rock Eng. 40(5), 505–517 (2007)

    Article  Google Scholar 

  18. Yılmaz G.N., Göktan M.R.: Effect of sawing rate on force and energy requirements in the circular sawing of granites. Eskisehir Osmangazi University. J. Eng. Archit. Fac. 11(2), 59–74 (2008)

    Google Scholar 

  19. Atici U., Ersoy A.: Correlation of specific energy of cutting saws and drilling bits with rock brittleness and destruction energy. J. Mater. Process. Technol. 209, 2602–2612 (2009)

    Article  Google Scholar 

  20. Ucun I., Buyuksagis S.I., Aslantas K.: Mermer kesme işleminde bor yağı katkılı soğutma sıvısının disk performansı üzerindeki etkisinin incelenmesi. J. Fac. Eng. Archit. Gazi Univ. 24(3), 435–441 (2009) (in Turkish)

    Google Scholar 

  21. Yılmaz G.N., Goktan M.R., Kibici Y.: An investigation of the petrographic and physico-mechanical properties of true granites influencing diamond tool wear performance and development of a new wear index. Wear 271(5–6), 960–969 (2011)

    Article  Google Scholar 

  22. Yurdakul M., Akdas H.: Prediction of specific cutting energy for large diameter circular saws during natural stone cutting. Int. J. Rock Mech. Min. 53, 38–44 (2012)

    Article  Google Scholar 

  23. Yasitli E.N., Bayram F., Unver B., Ozcelik Y.: Numerical modeling of circular sawing system using discrete element method. Int. J. Rock Mech. Min. 55, 86–96 (2012)

    Google Scholar 

  24. Aydin G., Karakurt I., Aydiner K.: Development of predictive models for specific energy of circular diamond sawblades in sawing of granitic rocks. Rock Mech. Rock Eng. 46(4), 767–783 (2013)

    Article  Google Scholar 

  25. Karakurt I., Aydin G., Aydiner K.: Experimental and statistical analysis of cutting force acting on diamond sawblade in sawing of granitic rocks. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 227, 286–300 (2013)

    Article  Google Scholar 

  26. Aydin G., Karakurt I., Aydiner K.: Wear performance of saw blades in processing of granitic rocks and development of models for wear estimation. Rock Mech. Rock Eng. 46(6), 1559–1575 (2013)

    Article  Google Scholar 

  27. Aydin G., Karakurt I., Aydiner K.: Investigation of the surface roughness of rocks sawn by diamond sawblades. Int. J. Rock Mech. Min. 61, 171–182 (2013)

    Google Scholar 

  28. Karakurt I., Aydin G., Aydiner K.: Predictive modeling of noise level generated during sawing of rocks by circular diamond sawblades. Sadhana 38(3), 491–511 (2013)

    Article  Google Scholar 

  29. Karakurt I.: Specific energy optimization in sawing of rocks using Taguchi approach. J. Cent. South Univ. 21(1), 365–372 (2014)

    Article  MathSciNet  Google Scholar 

  30. Yonghun J., Chungin L.: Application of neural networks to prediction of powder factor and peak particle velocity in tunnel blasting. ISEE Proc. 2, 68–76 (2002)

    Google Scholar 

  31. Aydin G., Karakurt I., Hamzaçebi C.: Artificial neural network and regression models for performance prediction of abrasive waterjet in rock cutting. Int. J. Adv. Manuf. Technol. 75(9–12), 1321–1330 (2014)

    Article  Google Scholar 

  32. ISRM: Rock characterization testing and monitoring suggested methods. In: Brown, E.T. (ed.) Pergamon Press (1981)

  33. Xie J., Tamaki J.: Parameterization of micro-hardness distribution in granite related to abrasive machining performance. J. Mater. Process. Technol. 186, 253–258 (2007)

    Article  Google Scholar 

  34. Tönshoff K.H., Wobker G.H., Przywara R.: Das Arbeitsverhalten von werkzeugen zum trennschleifen von gestein. Ind. Diam. Rundsch. 3, 198–205 (1999)

    Google Scholar 

  35. Haghnejad A., Ahangari K., Noorzad A.: Investigation on various relations between uniaxial compressive strength, elasticity and deformation modulus of Asmari formation in Iran. Arab. J. Sci. Eng. 39, 2677–2682 (2014)

    Article  Google Scholar 

  36. Pontes F.J., Ferreira R.J., Silva B.M., Paiva P.A., Balestrassi P.P.: Artificial neural networks for machining processes surface roughness modeling. Int. J. Adv. Manuf. Technol. 49, 879–902 (2010)

    Article  Google Scholar 

  37. Hamzacebi C, Akay D, Kutay F.: Comparison of direct and iterative artificial neural network forecast approaches in multi-periodic time series forecasting. Expert. Syst. Appl. 36, 3839–3844 (2009)

    Article  Google Scholar 

  38. Lippmann R.P.: An introduction to computing with neural nets. IEEE ASSP Mag. 4, 4–22 (1987)

    Article  Google Scholar 

  39. Baily D., Thompson D.M.: Developing neural network applications. AI Expert. 9, 33–41 (1990)

    Google Scholar 

  40. Wong F.S.: Time series forecasting using back propagation neural networks. Neurocomputing 2, 147–159 (1991)

    Article  Google Scholar 

  41. Masters T.: Practical Neural Network Recipes in C++. Academic Press, New York (1993)

    Google Scholar 

  42. Tang Z., Fishwick P.A.: Feedforward neural nets as models for time series forecasting. J. Comput. 5(4), 374–385 (1993)

    MATH  Google Scholar 

  43. Tiryaki S., Hamzacebi C.: Predicting modulus of rupture (MOR) and modulus of elasticity (MOE) of heat treated woods by artificial neural networks. Measurement 49, 266–274 (2014)

    Article  Google Scholar 

  44. Kumar B.R., Vardhan H., Govindaraj M., Vijay G.S.: Regression analysis and ANN models to predict rock properties from sound levels produced during drilling. Int. J. Rock Mech. Min. Sci. 58, 61–72 (2013)

    Google Scholar 

  45. Esmaeili M., Osanloo M., Rashinidejad F., Bazzazi A.A., Taji M.: Multiple regression, ANN and ANFIS models for prediction of backbreak in the open pit blasting. Eng. Comput. 30, 549–558 (2014)

    Article  Google Scholar 

  46. Cohen J., Cohen P., West S.G., Aiken L.S.: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Lawrence Erlbaum Associates, Publishers Mahwah, London (2003)

    Google Scholar 

  47. Karakus M., Kumral M., Kilic O.: Predicting elastic properties of intact rocks from index tests using multiple regression modeling. Int. J. Rock Mech. Min. Sci. 4, 323–330 (2005)

    Article  Google Scholar 

  48. Jin Uma M., Yun H., Sam Jeong C., Haeng Heo J.: Factor analysis and multiple regression between topography and precipitation on Jeju Island, Korea. J. Hydrol. 410, 189–203 (2011)

    Article  Google Scholar 

  49. Lewis C.D.: International and Business Forecasting Methods. Butterworths, London (1982)

    Google Scholar 

  50. Mohd Zain A., Haron H., Qasem S.N., Sharif S.: Regression and ANN models for estimating minimum value of machining performance. Appl. Math. Model. 36, 1477–1492 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izzet Karakurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, G., Karakurt, I. & Hamzacebi, C. Performance Prediction of Diamond Sawblades Using Artificial Neural Network and Regression Analysis. Arab J Sci Eng 40, 2003–2012 (2015). https://doi.org/10.1007/s13369-015-1589-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1589-x

Keywords

Navigation