Skip to main content
Log in

Stagnation point flow of a MHD dusty fluid towards a stretching sheet with radiation

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

The effect of radiation on the flow near the two-dimensional stagnation point of an incompressible, viscous, electrically conducting dusty fluid towards stretching sheet is analyzed. Rosseland approximation is used to model the radiative heat transfer. Highly non-linear momentum boundary layer equations and thermal boundary layer equations are converted into similarity equations and then solved numerically using Runge Kutta Fehlberg fourth–fifth order method. The thermal results are analyzed for the situation when stretching boundary is prescribed with surface temperature and prescribed with heat flux. Comparison with previously published work is performed and full agreement is obtained. Variation of physical parameters with the ratio of free stream velocity parameter to stretching sheet parameter have been illustrated graphically and in tabular form to depict special features of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crane, L.J.: Flow past a stretching sheet. Z. Angew. Math. Phys (ZAMP)21, 645–647 (1970)

    Google Scholar 

  2. Grubka, L.J., Bobba, K.M.: Heat transfer characteristics of a continuous stretching surface with variable temperature. J. Heat Transf. 107, 248–250 (1985)

    Article  Google Scholar 

  3. Chen, C.H.: Laminar mixed convection adjacent to vertical, continuously stretching sheets. Heat Mass Transf. 33, 471–476 (1998)

    Article  Google Scholar 

  4. Cortell, R.: A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl. Math. Comput. 168, 557–566 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hiemenz, K.: Die grenzschicht an einem in dengleich formigen flussigkeitsstrom eingetauchten geraden kreiszlinder. Dingl. Polytec. J. 326, 321–328 (1911)

    Google Scholar 

  6. Chiam, T.C.: Stagnation-point flow towards a stretching plate. J. Phys. Soc. Jpn 63, 2443–2444 (1994)

    Article  Google Scholar 

  7. Roy Mahapatra, T., Gupta, A.S.: Magnetohydrodynamics stagnation point flow towards a stretching sheet. Acta Mechnica 152, 191–196 (2001)

    Article  Google Scholar 

  8. Roy Mahapatra, T., Gupta, A.S.: Heat transfer in stagnation pint flow todards a stretching sheet. Heat Mass Transf. 38, 517–521 (2002)

    Article  Google Scholar 

  9. Ishak, A., Jafar, K., Nazar, R., Pop, I.: MHD stagnation point flow towards a stretching sheet. Physica A 388, 3377–3383 (2009)

    Article  Google Scholar 

  10. Pop, S.R., Grosan, T., Pop, I.: Radiation effects on the flow near the stagnation point of a stretching sheet. Technische Mechanik 29, 100–106 (2004)

    Google Scholar 

  11. Pal, D.: Heat and mass transfer in stagnation-point flow towards a stretching surface in the presence of buoyancy force and thermal radiation. Meccanica 44, 145–158 (2009)

    Article  MATH  Google Scholar 

  12. Singh, P., Jangid, A., Tomer, N.S., Sinha, D.: Effects of thermal radiation and magnetic field on unsteady stretching permeable sheet in presence of free stream velocity. Int. J. Inforn. Mathe. Sci 03, 160–166 (2010)

    Google Scholar 

  13. Pop, I., Ishak, A., Aman, F.: Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited. Z. Angew. Math. Phys. (2011). doi:10.1007/s00033-011-0131-6

    MathSciNet  Google Scholar 

  14. Abel, M.S., Mahesha, N.: Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. App. Math. Model 32, 1965–1983 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, C.H.: Magneto-hydrodynamic mixed convection of a power-law fluid past a stretching surface in the presence of thermal radiation and internal heat generation/absorption. Int. J. Non-Linear Mechs. 44, 596–603 (2009)

    Article  MATH  Google Scholar 

  16. Makinde, O.D.: On MHD boundary-layer flow and mass transfer past a vertical plate in a porous medium with constant heat flux. Int. J. Num. Methods Heat Fluid Flow. 19(3/4), 546–554 (2009)

    Google Scholar 

  17. Saffman, P.G.: On the stability of laminar flow of a dusty gas. J. Fluid Mechs 13, 120–128 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chakrabarti, K.M.: Note on Boundary layer in a dusty gas. AIAA J. 12(8), 1136–1137 (1974)

    Article  MATH  Google Scholar 

  19. Agranat, V.M.: Effect of pressure gradient on friction and heat transfer in a dusty boundary layer. Fluid Dyn. 23(5), 729–732 (1988)

    Article  Google Scholar 

  20. Vajravelu, K., Nayfeh, J.: Hydromagnetic flow of a dusty fluid over a stretching sheet. Int. J. Non-linear Mech. 27, 937–945 (1992)

    Article  MATH  Google Scholar 

  21. Datta, N., Mishra, S.K.: Two-dimensional stagnation point flow of a dusty fluid near an oscillating plate. Acta Mechanica 36(1–2), 71–78 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gireesha, B.J., Ramesh, G.K., Subhas Abel, M., Bagewadi, C.S.: Boundary layer flow and heat transfer of a dusty fluid flow over a stretching sheet with non-uniform heat source/sink. Int. J. Multiph. Flow 37(8), 977–982 (2011)

    Article  Google Scholar 

  23. Gireesha, B.J., Manjunatha, S., Bagewadi, C.S.: Unsteady hydromagnetic boundary layer flow and heat transfer of dusty fluid over a stretching sheet. Afr. Mat 22 (2011). doi:10.1007/s13370-011-0031-0

  24. Ishak, A., Nazar, R., Pop, I.: Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet. Heat Mass Transf. 44, 921–927 (2008)

    Article  Google Scholar 

  25. Pal, D., Mondal, H.: MHD non-Darcy mixed convective diffusion of species over a stretching sheet embedded in a porous medium with non-uniform heat source/sink, variable viscosity and Soret effect. Commun. Nonlinear. Sci. Numer. Simulat (2011). doi:10.1016/j.cnsns.2011.05.035

  26. Aziz, A.: A similarity solution for laminar thermal boundary layer over aflat plate with a convective surface boundary condition. Com. Non. Sci Numer Simulat 14, 1064–1068 (2009)

    Article  MathSciNet  Google Scholar 

  27. Schlichting, H.: Boundary layer theory, McGraw-Hill, New York (1968)

Download references

Acknowledgments

The authors are very much thankful to the editor and referee for their encouraging comments and constructive suggestions to improve the presentation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Gireesha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, G.K., Gireesha, B.J. & Bagewadi, C.S. Stagnation point flow of a MHD dusty fluid towards a stretching sheet with radiation. Afr. Mat. 25, 237–249 (2014). https://doi.org/10.1007/s13370-012-0114-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-012-0114-6

Keywords

Mathematics Subject Classification (2000)

Navigation