Skip to main content
Log in

Nanoindentation of laterally overgrown epitaxial gallium nitride

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstact

Nanoindentation has been used to investigate and compare the mechanical properties of GaN grown by the lateral epitaxial overgrowth (LEO) method and the defective seed region prepared by metalorganic chemical vapour deposition. Common modulus of elasticity values (∼230 GPa) and hardness values (∼19 GPa) were found for both materials. The GaN response to nanoindentation was found to be purely elastic for low indentation loads with the onset of plasticity being marked by discontinuities or “pop-in” events in the indenter load-penetration curves. The maximum shear stress under the indenter at pop-in events for LEO GaN corresponds well with the critical shear stress necessary for homogeneous dislocation nucleation, indicating that the defects in this region are too sparse and do not aid in dislocation nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Nakamura and G. Fasol, The Blue Laser, Springer, Berlin (1997).

    Google Scholar 

  2. Y. F. Wu, B. P. Keller, P. Fini, S. Keller, T. J. Jenkins, L. T. Kehias, S. P. Denbaars, and U. K. Mishra, IEEE Electron Device Letters. 19, 50 (1998).

    Article  CAS  Google Scholar 

  3. S. Keller, B. P. Keller, Y. Wu, B. Heying, D. Kapolnek, J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 68, 1525 (1996).

    Article  CAS  Google Scholar 

  4. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Appl. Phys. Lett. 72, 211 (1998).

    Article  CAS  Google Scholar 

  5. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. 83, 3656 (1998).

    Article  CAS  Google Scholar 

  6. H. Marchand, X. H. Wu, J. P. Ibbetson, P. T. Fini, P. Kozodoy, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 747 (1998).

    Article  CAS  Google Scholar 

  7. S. J. Rosner, G. Girolami, H. Marchand, P. T. Fini, J. P. Ibbetson, L. Zhao, S. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Speck, Appl. Phys. Lett. 74, 2035 (1999).

    Article  CAS  Google Scholar 

  8. T. S. Zheleva, O.-H. Nam, M. D. Bremser, and R. F. Davis, Appl. Phys. Lett. 71, 2472 (1997).

    Article  CAS  Google Scholar 

  9. K. Linthicum, T. Gehrke, D. Thomson, E. Carlson, P. Rajagopal, T. Smith, D. Batchelor, and R. Davis, Appl. Phys. Lett. 75, 196 (1999).

    Article  CAS  Google Scholar 

  10. N. P. Kobayashi, J. T. Kobayashi, X. Zhang, P. D. Dapkus, and D. H. Rich, Appl. Phys. Lett. 74, 2836 (1999).

    Article  CAS  Google Scholar 

  11. S. Nakamura, M. Senoh, S.-I. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, J. Crystal Growth. 189–190, 820 (1998).

    Article  Google Scholar 

  12. C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui, and A. Sakai, J. Crystal Growth. 189–190, 61 (1998).

    Article  Google Scholar 

  13. P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 73, 975 (1998).

    Article  CAS  Google Scholar 

  14. G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, Appl. Phys. Lett. 75, 247 (1999).

    Article  CAS  Google Scholar 

  15. L. F. Eastman and U. K. Mishra, IEEE Spectrum. 39, 28 (2002).

    Article  Google Scholar 

  16. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  17. Y.-G. Jung, B. R. Lawn, M. Martyniuk, H. Huang, and X. Z. Hu, J. Mater. Res. 19, 3076 (2004).

    Article  CAS  Google Scholar 

  18. A. C. Fischer-Cripps, Nanoindentation, 2nd edition, Springer-Verlag, New York (2004).

    Google Scholar 

  19. S. R. Jian, T. H. Fang, and D. S. Chuu, J. Electron. Mater 32, 496 (2003).

    Article  CAS  Google Scholar 

  20. P. Kavouras, P. Komninou, and T. Karakostas, Thin Solid Films. 515, 3011 (2007).

    Article  CAS  Google Scholar 

  21. R. Nowak, M. Pessa, M. Suganuma, M. Leszczynski, I. Grzegory, S. Porowski, and F. Yoshida, Appl. Phys. Lett. 75, 2070 (1999).

    Article  CAS  Google Scholar 

  22. M. D. Drory, J. W. Ager Iii, T. Suski, I. Grzegory, and S. Porowski, Appl. Phys. Lett. 69, 4044 (1996).

    Article  Google Scholar 

  23. S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. V. Swain, and G. Li, Appl. Phys. Lett. 78, 156 (2001).

    Article  CAS  Google Scholar 

  24. S. R. Jian, J. Y. Juang, N. C. Chen, J. S. C. Jang, J. C. Huang, and Y. S. Lai, Nanoscience and Nanotechnology Letters. 2, 315 (2010).

    Article  CAS  Google Scholar 

  25. T. Wei, Q. Hu, R. Duan, J. Wang, Y. Zeng, J. Li, Y. Yang, and Y. Liu, Nanoscale Research Letters. 4, 753 (2009).

    Article  CAS  Google Scholar 

  26. R. Navamathavan, Y. T. Moon, G. S. Kim, T. G. Lee, J. H. Hahn, and S. J. Park, Mater. Chem. Phys. 99, 410 (2006).

    Article  CAS  Google Scholar 

  27. M. H. Lin, H. C. Wen, C. Y. Huang, Y. R. Jeng, W. H. Yau, W. F. Wu, and C. P. Chou, Appl. Surface Sci. 256, 3464 (2010).

    Article  CAS  Google Scholar 

  28. J. E. Bradby, J. S. Williams, and M. V. Swain, J. Mater. Res. 19, 380 (2004).

    Article  CAS  Google Scholar 

  29. M. Fujikane, A. Inoue, T. Yokogawa, S. Nagao, and R. Nowak, Physica Status Solidi C. 7, 1798 (2010).

    Article  CAS  Google Scholar 

  30. M. Fujikane, T. Yokogawa, S. Nagao, and R. Nowak, Physica Status Solidi C. 8, 429 (2011).

    Article  CAS  Google Scholar 

  31. M. Fujikane, M. Leszczy ski, S. Nagao, T. Nakayama, S. Yamanaka, K. Niihara, and R. Nowak, Journal of Alloys and Compounds. 450, 405 (2008).

    Article  CAS  Google Scholar 

  32. C.-H. Tsai, S.-R. Jian, and J.-Y. Juang, Appl. Surface Sci. 254, 1997 (2008).

    Article  CAS  Google Scholar 

  33. B. Keller, S. Keller, D. Kapolnek, W. Jiang, Y. Wu, H. Masui, X. Wu, B. Heying, J. Speck, U. Mishra, and S. Denbaars, J. Electron. Mater. 24, 1707 (1995).

    Article  CAS  Google Scholar 

  34. P. Fini, L. Zhao, B. Moran, M. Hansen, H. Marchand, J. P. Ibbetson, S. P. DenBaars, U. K. Mishra, and J. S. Speck, Appl. Phys. Lett. 75, 1706 (1999).

    Article  CAS  Google Scholar 

  35. J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd edition, Wiley, New York (1982).

    Google Scholar 

  36. A. Polian, M. Grimsditch, and I. Grzegory, J. Appl. Phys. 79, 3343 (1996).

    Article  CAS  Google Scholar 

  37. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H. S. Leipner, Phys. Rev. B. 67, 172101 (2003).

    Article  Google Scholar 

  38. H. Hertz, J. Reine Angew. Math. 92, 156 (1881).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Martyniuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martyniuk, M., Parish, G., Marchand, H. et al. Nanoindentation of laterally overgrown epitaxial gallium nitride. Electron. Mater. Lett. 8, 111–115 (2012). https://doi.org/10.1007/s13391-012-1074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-1074-6

Keywords

Navigation