Skip to main content
Log in

Effect of indium doping and annealing on photoconducting property of wurtzite type CdS

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this paper we observed the effect of doping and annealing on the dark current and anomalous photoconducting behavior of hexagonal wurtzite CdS, synthesized by solid state reaction method. Undoped CdS sample shows higher anomalous behavior in photoconductivity as well as contains larger dark current of 19 nA. With the doping of Indium in CdS, dark current decreases from 19 nA to 1 nA but the anomalous behavior is not completely removed. While, after annealing at 150°C for four hour, indium doped CdS sample shows good switching property with rise and decay time of 360 ± 10 & 322 ± 6 seconds respectively. The anomalous photoconducting behavior is completely removed from annealed sample. X-ray diffraction patterns confirm the existence of hexagonal wurtzite phase of indium doped and undoped CdS samples while energy dispersion X-ray spectrum exhibits the elemental presence of cadmium, indium & sulfur in the indium doped sample. UV-Visible absorption spectra show the blue shift in absorption edge on indium doping from 475 nm to 425 nm in comparison to undoped sample. Photoluminescence spectra confirm the indium doping and reveal that annealed CdS sample has lesser defects among other samples due to which annealed sample has best switching performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. H. Li, T. Gao, and T. H. Wang, Appl. Phys. Lett. 86, 193109 (2005).

    Article  Google Scholar 

  2. T. Gao, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 86, 173105 (2005).

    Article  Google Scholar 

  3. G. S. Paul and P. Agarwal, J. Appl. Phys. 106, 103705 (2009).

    Article  Google Scholar 

  4. J. W. Orton, B. J. Goldsmith, J. A. Chapman, and M. J. Powell, J. Appl. Phys. 53, 1602 (1982).

    Article  Google Scholar 

  5. J. An, K. Xue, W. Xie, Q. Li, and J. Xu, Nanotechnology 22, 135702 (2011).

    Article  Google Scholar 

  6. S. K. Mishra, R. K. Srivastava, S. G. Prakash, R. S. Yadav, and A. C. Pandey, Electron. Mater. Lett. 7, 31 (2011).

    Article  Google Scholar 

  7. R. S. Aga Jr, D. Jowhar, M. Ewan, A. Steigerwald, A. Ueda, Z. Pan, W. E. Collins, and R. Mu, J. Phys.:Condens Matter. 20, 385206 (2008).

    Google Scholar 

  8. A. Maurya, P. Chauhan, S. K. Mishra, and R. K. Srivastava, J. of Alloys and Compd. 509, 8433 (2011).

    Article  Google Scholar 

  9. C. Wu and R. H. Bube, J. Appl. Phys. 45, 648 (1974).

    Article  Google Scholar 

  10. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, Science 293, 1455 (2001).

    Article  Google Scholar 

  11. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. 14, 158 (2002).

    Article  Google Scholar 

  12. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, Appl. Phys. A: Mater. Sci. Process. 76, 163 (2003).

    Article  Google Scholar 

  13. M. Law, H. Kind, B. Messer, F. Kim, and P. Yang, Angew. Chem. Int. Ed. 41, 2405 (2002).

    Article  Google Scholar 

  14. V. Singh and P. Chauhan, J. Phys. Chem. Solids 70, 1074 (2009).

    Article  Google Scholar 

  15. V. Singh, P. K. Sharma, and P. Chauhan, Mater. Chem. Phys. 121, 202 (2010).

    Article  Google Scholar 

  16. V. Singh, P. K. Shrama, and P. Chauhan, Mater. Charact. 62, 43 (2011).

    Article  Google Scholar 

  17. C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  Google Scholar 

  18. Z. B. Sun, X. Z. Dong, W. Q. Chen, S. Shoji, X. M. Duan, and S. Kawata, Nanotechnology 19, 035611 (2008).

    Article  Google Scholar 

  19. K. S. Ramaiah, R. D. Pilkington, A. E. Hill, R. D. Tomlinson, and A. K. bhatnagar, Mater. Chem. Phys. 68, 22 (2001).

    Article  Google Scholar 

  20. A. Goswami, Thin Film Fundamentals, p.69, New Age International Publishers, New Delhi, India (2007).

    Google Scholar 

  21. H. Murai, T. Abe, J. Matsuda, H. Sato, S. Chiba, and Y. Kashiwaba, Appl. Surf. Sci. 244, 351 (2005).

    Article  Google Scholar 

  22. X. Duan, Y. Huang, R. Agrawal, and C. M. Leiber, Nature 421, 241 (2003).

    Article  Google Scholar 

  23. X. Duan, C. Niu, V. Sahi, J. Chen, J. W. Parce, S. Empedocles, and J. L. Goldman, Nature 425, 274 (2003).

    Article  Google Scholar 

  24. A.B. Greytak, C.J. Barrelet, Y. Li, and C. M. Leiber, Appl. Phys. Lett. 87, 151103 (2005).

    Article  Google Scholar 

  25. A. Ponzoni, E. Comini, G. Sberccglien, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, Appl. Phys. Lett. 88, 203101 (2006).

    Article  Google Scholar 

  26. Z. H. Zhong, D. L. Wang, Y. Cui, M. W. Bockrath, and C. M. Leiber, Science 302, 1377 (2003).

    Article  Google Scholar 

  27. Z. L. Wang and J. H. Song, Science 312, 242 (2006).

    Article  Google Scholar 

  28. W. C. W. Chan and S. M. Nie, Science 281, 2016 (1998).

    Article  Google Scholar 

  29. L. Peng, J. L. Zhai, D. J. Wang, P. Wang, Y. Zhang, S. Pang, and T. F. Xie, Chem. Phys. Lett. 456, 231 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vineet Kumar Singh or Pratima Chauhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, V.K., Chauhan, P., Mishra, S.K. et al. Effect of indium doping and annealing on photoconducting property of wurtzite type CdS. Electron. Mater. Lett. 8, 295–299 (2012). https://doi.org/10.1007/s13391-012-2011-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2011-4

Keywords

Navigation