Skip to main content
Log in

Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A faster rate of band gap enhancement of ZnO nanocrystalline films using strontium dopant is reported for the first time. Hexagonal wurtzite Zn1− x Sr x O films have been deposited by sol gel spin coating using zinc acetate. The optical band gap increases from 3.150 to 3.275 eV as the Sr concentration increases from x = 0 to x = 0.03 showing an enhancement of 3.96% which is substantially higher than those reported earlier using Mg or Ca dopants indicating the possibility of application in optoelectronics. Strong UV and comparatively weak defect related emission are observed in photoluminescence spectra of the films. The NBE emission at 3.10 eV for undoped ZnO thin film shows a blue shift of 53 meV as Sr dopant concentration increases to 3 at. %. Films are also characterized by FTIR, AFM, SEM and EDX. Distinct characteristic absorption for Zn-O stretching modes are present. Surface of Zn1− x Sr x O polycrystalline thin films are significantly smooth and show pentagonal shaped grains which approach to uniform spherical grains throughout the surface with increase in dopant concentration. The crystallite size along (002) plane is less than 10 nm for all samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Misra, R. K. Shukla, A. Srivastava, and A. Srivastava, Appl. Phys. Lett. 95, 031901 (2009).

    Article  Google Scholar 

  2. R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, J. Cryst. Growth 294, 427 (2006).

    Article  Google Scholar 

  3. S. Dixit, A. Srivastava, A. Srivastava, and R. K. Shukla, J. Appl. Phys. 102, 113114 (2007).

    Article  Google Scholar 

  4. D. Mishra, A. Srivastava, A. Srivastava, and R. K. Shukla, Appl. Surf. Sci. 255, 2947 (2008).

    Article  Google Scholar 

  5. J. Caarrey, M. L. Kahn, S. Sanchez, B. Chaudret, and M. Respaud, Eur. Phys. J. Appl. Phys. 40, 71 (2007).

    Article  Google Scholar 

  6. F. K. Shan, B. I. Kim, G. X. Liu, Z. F. Liu, J. Y. Sohn, W. J. Lee, B. C. Shin, and Y. S. Yu, J. Appl. Phys. 95, 4772 (2004).

    Article  Google Scholar 

  7. A. B. Moghaddam, T. Nazari, J. Badraghi, and M. Kazemzad, Int. J. Electrochem. Sci. 4, 247 (2009).

    Google Scholar 

  8. N. R. S. Farley, C. R. Staddon, L. Zhao, K. W. Edmonds, B. L. Gallagher, and D. H. Gregory, J. Mater. Chem. 14, 1087 (2004).

    Article  Google Scholar 

  9. G. M. Ali and P. Chakrabarti, IEEE Photonics Journal 2, 784 (2010).

    Article  Google Scholar 

  10. S. H. Lee, H. J. Lee, H. Shiku, T. Yao, and T. Matsue, Electron. Mater. Lett. 8, 511 (2012).

    Article  Google Scholar 

  11. G. M. Ali and P. Chakrabarti, J. Phys. D: Appl. Phys. 43, 415103 (2010).

    Article  Google Scholar 

  12. W. Water, S.-F. Wang, Y.-P. Chen, and J.-C. Pu, Integrated Ferroelectrics 72, 13 (2005).

    Article  Google Scholar 

  13. Q. J. Wang, C. Pugl, W. F. Andress, D. Ham, F. Capassob, and M. Yamanishi, J. Vac. Sci. Techno. B 26, 1848 (2008).

    Article  Google Scholar 

  14. W. S. Shi, O. Agyeman, and C. N. Xua, J. Appl. Phys. 91, 5640 (2002).

    Article  Google Scholar 

  15. T. A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, and S. P. Subramanian, J. Mater. Sci. 43, 1776 (2008).

    Article  Google Scholar 

  16. H. Zhuang, J. Wang, H. Liu, J. Li, and P. Xu, Acta Phys. Pol. A 119, 819 (2011).

    Google Scholar 

  17. N. Wang, Y. Yang, and G. Yang, Nanoscale Res. Lett. 6, 338 (2011).

    Article  Google Scholar 

  18. K. Mahmood and S. B. Park, Electron. Mater. Lett. 9, 161 (2013).

    Article  Google Scholar 

  19. G.-H. Lee, Electron. Mater. Lett. 6, 155 (2010).

    Article  Google Scholar 

  20. G. H. Lee, Y. Yamamoto, M. Kourogi, and M. Ohtsu, Thin Solid Films 386, 117 (2001).

    Article  Google Scholar 

  21. P. Misra, P. K. Sahoo, P. Tripathi, V. N. Kulkarni, R. V. Nandedkar, and L. M. Kukreja, Appl. Phys. A 78, 37 (2004).

    Article  Google Scholar 

  22. K. Gunturkun and H. O. Toplan, Ceramics Silikaty 50, 225 (2006).

    Google Scholar 

  23. A. K. Das, P. Misra, and L. M. Kukreja, J. Phys. D: Appl. Phys. 42, 165405 (2009).

    Article  Google Scholar 

  24. M. Sano, K. Miyamoto, H. Kato, and T. Yao, J. Appl. Phys. 95, 5527 (2004).

    Article  Google Scholar 

  25. S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan, H. S. Kwok, X. H. Zhang, and S. J. Chua, J. Appl. Phys. 98, 013505 (2005).

    Article  Google Scholar 

  26. Y.-C. Lee, S.-Y. Hu, W. Water, K.-K. Tiong, Z.-C. Feng, Y.-T. Chen, J.-C. Huang, J.-W. Lee, C.-C. Huang, J.-L. Shen, and M.-H. Cheng, J. Lumin. 129, 148 (2009).

    Article  Google Scholar 

  27. X. Teng, H. Fan, S. Pan, C. Ye, and G. Li, Materials Lett. 61, 201 (2007).

    Article  Google Scholar 

  28. R. Ding, C. Xu, B. Gu, Z. Shi, H. Wang, L. Ba, and Z. Xiao, J. Mater. Sci. Technol. 26, 601 (2010).

    Article  Google Scholar 

  29. Z. R. Khan, M. S. Khan, M. Zulfequar, and M. S. Khan, Mater. Sci. Appl. 2, 340 (2011).

    Google Scholar 

  30. A. George, S. K. Sharma, S. Chawla, M. M. Malik, and M. S. Qureshi, J. Alloy Coompd. 509, 5942 (2011).

    Article  Google Scholar 

  31. S. M. Kumaran and R. Gopalakrishnan, J. Sol-Gel Sci. Technol. 62, 193 (2012).

    Article  Google Scholar 

  32. X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, Appl. Phys. A 77, 561 (2003).

    Article  Google Scholar 

  33. G. K. Williamson and W. H. Plot, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

  34. G. B. Williamson and R. C. Smallman, III, Philos. Mag. 1, 34 (1956).

    Article  Google Scholar 

  35. S. Kahraman, F. Bayansal, H. M. Çakmak, H. A. Çetinkara, and H. S. Güder, Appl. Phys. A 109, 87 (2012).

    Article  Google Scholar 

  36. C. S. Suchand Sandeep, R. Phillip, R. Satheeshkumar, and V. Kumar, Appl. Phys. Lett. 89, 063102 (2006).

    Article  Google Scholar 

  37. J. R. Chelikowsky and M. L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  Google Scholar 

  38. A. Ghosh and R. N. P. Choudhary, Phys. Status Solidi A 206, 535 (2009).

    Article  Google Scholar 

  39. A. J. Chen, X. M. Wu, Z. D. Sha, L. J. Zhuge, and Y. D. Meng, J. Phys. D: Appl. Phys. 39, 4762 (2006).

    Article  Google Scholar 

  40. J. Zhang, S.-Q. Zhao, K. Zhang, J.-Q. Zhou, and Y.-F. Cai, Nanoscale Res. Lett. 7, 405 (2012).

    Article  Google Scholar 

  41. P. Cheng, D. Li, Z. Yuan, P. Chen, and D. Yang, Appl. Phys. Lett. 92, 041119 (2008).

    Article  Google Scholar 

  42. A. Srivastava, R. K. Shukla, and K. P. Misra, Cryst. Res. Technol. 46, 949 (2011).

    Google Scholar 

  43. A. J. Dekker, Solid State Physics, Macmillan India Ltd. (2003).

    Google Scholar 

  44. J. Wang, G. Du, Y. Zhang, B. Zhao, X. Yang, and D. Liu, J. Cryst. Growth 263, 269 (2004).

    Article  Google Scholar 

  45. P. S. Xu, Y. M. Sun, C. S. Shi, F. Q. Xu, and H. B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003).

    Article  Google Scholar 

  46. S. A. Studenikin, N. Golego, and M. Cociverab, J. Appl. Phys. 84, 2287 (1998).

    Article  Google Scholar 

  47. T. Minami, H. Nanto, and S. Takata, J. Lumin. 24/25, 63 (1981).

    Article  Google Scholar 

  48. L. Wu, Y. Wu, X. Pan, and F. Kong, Opt. Mater. 28, 418 (2006).

    Article  Google Scholar 

  49. H. Gao, F. Yan, J. Li, Y. Zeng, and J. Wang, J. Phys. D: Appl. Phys. 40, 3654 (2007).

    Article  Google Scholar 

  50. R. N. Gayen, K. Sarkar, S. Hussain, R. Bhar, and A. K. Pal, Ind. J. Pure & Appl. Phys. 49, 470 (2011).

    Google Scholar 

  51. S. S. Shinde, P. S. Shinde, V. G. Sathe, S. R. Barman, C. H. Bhosale, and K. Y. Rajpure, J. Mol. Str. 984, 186 (2010).

    Article  Google Scholar 

  52. R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng, and J. Ding, Powder Technology 189, 426 (2009).

    Article  Google Scholar 

  53. X.-W. Du, Y.-S. Fu, J. Sun, X. Han, and J. Liu, Semicond. Sci. Technol. 21, 1202 (2006).

    Article  Google Scholar 

  54. S. L. Patil, M. A. Chougule, S. G. Pawar, S. Sen, and V. B. Patil, Soft Nanoscience Letters 2, 46 (2012).

    Google Scholar 

  55. T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, Cryst. Res. Technol. 45, 1154 (2010).

    Article  Google Scholar 

  56. A. S. Zoolfakara, M. Z. Ahmad, R. A. Rani, J. Z. Ou, S. Balendhran, S. Zhuiykov, K. Latham, W. Wlodarski, and K. K. Zadeh, Sens. Actuators B 185, 620 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchal Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Kumar, N., Misra, K.P. et al. Enhancement of band gap of ZnO nanocrystalline films at a faster rate using Sr dopant. Electron. Mater. Lett. 10, 703–711 (2014). https://doi.org/10.1007/s13391-014-3131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-3131-9

Keywords

Navigation