Skip to main content
Log in

Study of junction charge transport properties of boron subphthalocyanine chloride thin film

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The charge carrier transport properties and conduction mechanism of boron subphthalocyanine chloride (Cl-BsubPc) thin film based junction was analyzed by using current-voltage (I-V) characteristics and dielectric spectroscopy technique. I-V characteristic of ITO/Cl-BsubPc/Al junction confirmes the domination of space charge limited conduction (SCLC) in the high voltage region (7–9 V). The AC conductivity study indicates the presence of frequency induced hopping conduction mechanism in Cl-BsubPc thin film with hopping relaxation time of 16.6–4.1 ms. The temperature dependence of AC conductivity suggests that conduction in the films dominated by hopping of carriers between the localized states at low temperature and movements of thermally excited carriers from energy levels within the band gap at higher temperature. The activation energy of the charge carriers responsible for conduction was found to lie between 0.35–0.40 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. W. Michael, B. R. Alexander, and C. W. Carl, J. Porphyrins Phthalocyanines 14, 759 (2010).

    Article  Google Scholar 

  2. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

    Article  Google Scholar 

  3. N. N. Wang, J. S. Yu, Z. L. Yuan, and Y. D. Jiang, The Eur. Phys. J. Appl. Phys. 58, 20201 (2012).

    Article  Google Scholar 

  4. S. Mali Sawanta, D. S. Dalavi, P. N. Bhosale, C. A. Betty, A. K. Chauhan, and P. S. Patil, RSC Adv. 2, 2100 (2012).

    Article  Google Scholar 

  5. V. Dana, F. C. Eugenia, P. Iuliana, C. Vlad, and G. A. Mayte, Sensor 6, 8193 (2012).

    Google Scholar 

  6. M. L. Chi, P. W. Hui, Y. P. Tsung, W. C. Chia, S. C. Wei, T. C. Chien, W. Chin-Li, L. Ching-Yao, and D. E. W. Guang, Energy Environ. Sci. 5, 6460 (2012).

    Article  Google Scholar 

  7. Y. Wang, D. Gu, F. Gan, and G. Xuebao, Opt. Commun. 21, 948 (2001).

    Google Scholar 

  8. Y. Yang Li, S. Xu, X. Li, K. Chen, and H. Tian, Chem. Lett. 36, 664 (2007).

    Article  Google Scholar 

  9. G. E. Morse, M. G. Helander, J. F. Maka, Z. H. Lu, and T. P. Bender, ACS Appl. Mater. Interfaces 2, 1934 (2010).

    Article  Google Scholar 

  10. K. C. Renshaw, X. Xu, and S. R. Forrest, Org. Electron. 11, 175 (2010).

    Article  Google Scholar 

  11. H. Xu, E. A. Ermilov, B. Roder, and D. K. P. Ng, Phys. Chem. Chem. Phys. 12, 7366 (2010).

    Article  Google Scholar 

  12. G. C. Christian, G. R. David, and T. Tomas, Chem. Rev. 102, 835 (2002).

    Article  Google Scholar 

  13. S. H. Kang, K. Kim, Y. S. Kang, W. C. Zin, G. Olbrechts, K. Wostyn, K. Clays, and A. Persoons, Chem. Commun. 1661 (1999).

    Google Scholar 

  14. D. Garcia, M. A. Agullo, F. Lopez, A. Sastre, T. Torres, W. E. Torruellas, and G. I. Stegeman, J. Phys. Chem. 99, 14988 (1995).

    Article  Google Scholar 

  15. N. C. Remero, A. Medina, A. Molina Ontoria, C. C. Claessens, L. Echegoyen, N. Martin, T. Torres, and D. M. Guldi, Chem. Commun. 48, 4953 (2012).

    Article  Google Scholar 

  16. N. C. Remero, J. Guilleme, C. Villegas, J. L. Delgado, Rodriguez, D. Gonzalez, N. Martin, T. Torres, and D. M. Guldi, J. Mater. Chem. 21, 15914 (2011).

    Article  Google Scholar 

  17. M. E. El-Khouly, Phys. Chem. Chem. Phys. 12, 1274 (2010).

    Article  Google Scholar 

  18. K. L. Mutolo, E. I. Mayo, B. P. Rand, S. R. Forrest, and M. E. Thompson, J. Am. Chem. Soc. 128, 8108 (2006).

    Article  Google Scholar 

  19. B. Nicola, C. W. Sang, P. Sullivan, D. Newby, E. S. Kevin, and S. J. Tim, Adv. Funct. Mater. 22, 561 (2012).

    Article  Google Scholar 

  20. P. Sullivan, A. Duraud, L. Hancox, N. Beaumont, G. Mirr, H. R. Tucker James, A. Ross, M. Shipman, and S. J. Tim, Adv. Ener Mater. 1, 352 (2011).

    Article  Google Scholar 

  21. Y. H. Chen, Y. J. Cheng, G. R. Lee, C. I. Wu, and T. W. Pi, Org. Electr. 12, 562 (2011).

    Article  Google Scholar 

  22. M. Singh, A. Mahajan, R. K. Bedi, and D. K. Aswal, Electron. Mater. Lett. 9, 101 (2013).

    Article  Google Scholar 

  23. S. Yulong, A. R. Hosseini, M. H. Wong, and G. G. Malliaras, Chem. Phys. Chem. 5, 16 (2004).

    Google Scholar 

  24. M. A. Lambert and P. Mark, Current Injection in Solids, Academic Press, New York (1970).

    Google Scholar 

  25. J. Ross Macdonald and William R. Kenan, Impedance Spectroscopy-Emphasizing Solid Materials and Systems, p. 6, John-Wiley & Sons, New York (1987).

    Google Scholar 

  26. C. C. Ta, T. W. Li, T. Yian, L. C. Hung, J. L. C. Hsin, C. Chyong, and C. K. Hsien, Thin Solid Films 520, 2289 (2012).

    Article  Google Scholar 

  27. A. P. Stuzhin, S. M. Mikhailov, V. V. Travkin, Y. E. Gudkov, and L. G. Pakhomovb, Macroheterocycles 5, 162 (2012).

    Article  Google Scholar 

  28. S. Y. Hoon, K. G. Woo, J. W. Sik, R. Pode, and K. J. Hyuk, Mol. Cryst. Liq. Cryst. 8, 565 (2012).

    Google Scholar 

  29. J. H. Lan, J. Kanicki, A. Catalano, J. Keane, W. D. Boer, and G. Tieer, J. Electron. Mater. 25, 1806 (1996).

    Article  Google Scholar 

  30. J. S. Castrucci, M. G. Helander, G. E. Morse, L. Z. Hong, M. Y. Christopher, and P. B. Timothy, Cryst. Growth Des. 12, 1095 (2012).

    Article  Google Scholar 

  31. P. Heremans, D. Chevns, and B. Rand, Acc. Chem. Res. 42, 1740 (2009).

    Article  Google Scholar 

  32. Y. Ma, W. Tian, and J. Shen, Mater. Sci. Eng. C 10, 19 (1999).

    Article  Google Scholar 

  33. A. Goswami and A. P. Goswami, Thin Solid Films 16, 175 (1973).

    Article  Google Scholar 

  34. C. H. Kim, O. Yaghmazadeh, D. Tondelier, Y. B. Jeong, Y. Bonnassieux, and G. Horowitz, J. Appl. Phy. 109, 083710 (2011).

  35. A. K. Jonscher, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London (1983).

    Google Scholar 

  36. A. K. Jonscher, Nature 267, 673 (1977).

    Article  Google Scholar 

  37. J. C. Dyre and Th. B. Schroder, Phys. State Solid B 5, 230 (2002).

    Google Scholar 

  38. P. S. Anantha and K. Hariharan, Mater. Sci. Eng. B 121, 9 (2005).

    Article  Google Scholar 

  39. M. Vijayakumar, P. Muralidharan, M. Venkateswarlu, and N. Satyanarayana, Mater. Chem. Phys. 95, 16 (2006).

    Article  Google Scholar 

  40. F. U. Z. Chowdhury and A. H. Bhuiyan, Thin Solid Films 78, 370 (2000).

    Google Scholar 

  41. E. Iguchi, K. Udea, and W. H. Jung, Phys. Rev. B 54, 17431 (1996).

    Article  Google Scholar 

  42. V. Coropceanu, J. Cornil, D. S. F. Demetrio, A. Y. Olivier, R. Silbey, and J. L. Bredas, Chem. Rev. 107, 926 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Mahajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Mahajan, A., Gupta, N. et al. Study of junction charge transport properties of boron subphthalocyanine chloride thin film. Electron. Mater. Lett. 11, 118–126 (2015). https://doi.org/10.1007/s13391-014-4097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4097-3

Keywords

Navigation