Skip to main content
Log in

CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) films were deposited on fluorine-doped tin oxide (FTO) glass substrates with the application of polysulfide redox reactions and a CuS counter electrode to fabricate CdS/CdSe quantum dot-sensitized solar cells (QDSCs). In the present study, ZnO nanoparticles were deposited in the interstices of the ZnO nanorods. The performance of the QDSCs was improved by the ZnO nanoparticle/ nanorod composite structure because the ZnO nanorods exhibit high electron transport, and while the ZnO nanoparticles have a large surface area for QD deposition. The ZnO nanoparticle/nanorod composite films represent a promising achievement for enhancing the conversion efficiency of QDSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Gonzalez-Pedro, C. Sima, G. Marzari, P. P. Boix, S. Gimenez, Q. Shen, T. Dittrich, and I. Mora-Sero, Phys. Chem. Chem. Phys. 15, 13835 (2013).

    Article  Google Scholar 

  2. J. Wang, I. Mora-Sero, Z. Pan, K. Zhao, H. Zhang, Y. Feng, G. Yang, X. Zhong, and J. Bisquert, J. Am. Chem. 135, 15913 (2013).

    Article  Google Scholar 

  3. H. J. Lee, J. Yum, H. C. Leventis, S. M. Zakeerudding, S. A. Haque, P. Chen, S. Seok, M. Gratzel, and M. K. Nazeeruddin, J. Phys. Chem. C. 112, 11600 (2008).

    Article  Google Scholar 

  4. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, and U. Banin, ACS Nano. 4, 5962 (2010).

    Article  Google Scholar 

  5. Y. L. Lee and Y. Lo, Adv. Funct. Mater. 19, 604 (2009).

    Article  Google Scholar 

  6. P. K. Santra and P. V. Kamat, J. Am. Chem. 134, 2508 (2012).

    Article  Google Scholar 

  7. Z. Tachan, I. Hod, M. Shalom, L. Grinis, and A. Zaban, Phys. Chem. Chem. Phys. 15, 3841 (2103).

    Article  Google Scholar 

  8. J. Tian, Q. Zhang, L. Zhang, R. Gao, L. Shen, S. Zhang, X. Qu, and G. Cao, Nanoscale. 5, 936 (2013).

    Article  Google Scholar 

  9. C. Liu, Z. Liu, L. E, Y. Li, J. Han, Y. Wang, Z. Liu, J. Ya, and X. Chen, Eletron. Mater. Lett. 8, 481 (2012).

    Article  Google Scholar 

  10. M.-Y. Cho, S.-M. Park, K.-B. Kim, and K. C. Roh, Electron. Mater. Lett. 9, 809 (2013).

    Article  Google Scholar 

  11. C. Lin, H. Lin, J. Li, and X. Li, J. Alloy Compd. 462, 175 (2008).

    Article  Google Scholar 

  12. K. Zheng, K. Zidek, M. Abdellah, M. Torbjornsson, P. Chabera, S. Shao, F. Zhang, and T. Pullerits, J. Phys. Chem. A. 117, 5919 (2013).

    Article  Google Scholar 

  13. J. Liu, A. Wei, Y. Zhao, K. Lin, and F. Luo, J. Mater. Sci: Mater. Electron. 25, 1122 (2014).

    Google Scholar 

  14. C. Justin Raj, S. N. Karthick, K. V. Hemalatha, M.-K. Son, H.-J. Kim, and K. Prabakar, J. Sol-Gel Sci. Technol. 62, 453 (2012).

    Article  Google Scholar 

  15. Z. L. S. Seow, A. S. W. Wong, V. Thavasi, R. Jose, S. Ramakrishna, and G. W. Ho, Nanotechnology, 20, 045604 (2009).

    Article  Google Scholar 

  16. C. Ku and J. Wu, Nanotechnology 18, 505706 (2007).

    Article  Google Scholar 

  17. C. Li, L. Yang, J. Xiao, Y. Wu, M. Sondergaard, Y. Luo, D. Li, Q. Meng, and B. Iversen, Phys. Chem. Chem. Phys. 15, 8710 (2013).

    Article  Google Scholar 

  18. C. Ku and J. Wu, Appl. Phys. Lett. 91, 093117 (2007).

    Article  Google Scholar 

  19. M. Wang, Y. Wang, and J. Li, Chem. Commun. 47, 11246 (2011).

    Article  Google Scholar 

  20. L. Lin, M. Yeh, C. Lee, C. Chow, and K. Ho, Electrochim. Acta 88, 421 (2013).

    Article  Google Scholar 

  21. C. Chou, C. Li, C. Lee, L. Lin, M. Yeh, R. Vittal, and K. Ho, Electrochim. Acta 88, 35 (2013).

    Article  Google Scholar 

  22. Y. F. Zhu, D. H. Fan, G. H. Zhou, Y. B. Lin, and L. Liu, Ceram. Int. 40, 3353 (2014).

    Article  Google Scholar 

  23. H. Seo, D. Ichida, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, and M. Shiratani, Int. J. Precis. Eng. Man. 15, 339 (2014).

    Article  Google Scholar 

  24. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, and J. Bisquert, Accounts Chem. Res. 42, 1848 (2009).

    Article  Google Scholar 

  25. G. Zhu, T. Xu, T. Lv, L. Pan, Q. Zhao, and Z. Sun, J. Electroanal. Chem. 650, 248 (2011).

    Article  Google Scholar 

  26. S. Rhee and W. Kwon, Korean J. Chem. Eng. 28, 1481 (2011).

    Article  Google Scholar 

  27. V. Gonzalez-Pedro, X. Xu, I. Mora-Sero, and J. Bisquert, ACS Nano. 4, 5783 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Je Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Raj, C.J. & Kim, HJ. CdS/CdSe quantum dot-sensitized solar cells based on ZnO nanoparticle/nanorod composite electrodes. Electron. Mater. Lett. 10, 1137–1142 (2014). https://doi.org/10.1007/s13391-014-4144-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4144-0

keywords

Navigation