Skip to main content
Log in

Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

High aspect ratio graphene nanosheets (GNS), prepared via liquid exfoliation, are homogeneously dispersed in thermoplastic polyurethane (TPU). Dielectric spectroscopy results are reported for these nanocomposites (up to 0.55 vol. % GNS) in the frequency range of 100 Hz to 5 MHz. The as-prepared GNS increased the AC conductivity 10–1000 times across the given frequency range. The dielectric constant is increased 5–6 times at 100 Hz for the maximum loading of GNS when compared with the pristine TPU, with subsequently high dielectric loss making them a suitable candidate for high energy dissipation applications such as EMI shielding. The temperature effects on the dielectric characteristics of 0.55 vol. % GNS/TPU nanocomposites beyond 400 K are more pronounced due to the interfacial and orientation polarization. Mechanical characteristics evaluation of GNS/TPU composites shows a marked increase in the ultimate tensile strength without compromising their ductility and stiffness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Dimiev, D. Zakhidov, B. Genorio, K. Oladimeji, B. Crowgey, L. Kempel, E. J. Rothwell, and J. M. Tour, ACS Appl. Mater. Interfaces 5, 7567 (2013).

    Article  Google Scholar 

  2. I. Tantis, G. C. Psarras, and D. Tasis, Express Polym. Lett. 6, 283 (2012).

    Article  Google Scholar 

  3. R. Balasubramaniyan, V. H. Pham, J. Jang, S. H. Hur, and J. S. Chung, Electron. Mater. Lett. 9, 837 (2013).

    Article  Google Scholar 

  4. Y. Zhao, Y. Huang, Q. Wang, X.Y. Wang, M. Zong, H. Wu, and W. Zhang, Electron. Mater. Lett. 9, 683 (2013).

    Article  Google Scholar 

  5. A. J. Akhtar, A. Gupta, B. K. Shaw, and S. K. Saha, Appl. Phys. Lett. 103, 242902 (2013).

    Article  Google Scholar 

  6. J. Syurik, O. A. Ageev, B. G. Konoplev, D. I. Cherednichenko, and A. Axeev, Carbon 63, 317 (2013).

    Article  Google Scholar 

  7. P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H. J. Ploehn, and H. C. Loye, Materials 2, 1697 (2009).

    Article  Google Scholar 

  8. H. Kim, Y. Miura, and C. W. Macosko, Chem. Materials 22, 3441 (2010).

    Article  Google Scholar 

  9. I. Tantis, G. C. Psarras, and D. Tasis, Express Polym. Lett. 6, 283 (2012).

    Article  Google Scholar 

  10. L. Liao and X. F. Duan, Mater Sci. Eng. R Rep. 70, 354 (2010).

    Article  Google Scholar 

  11. J. Shang, Y. Zhang, L. Yu, B. Shen, X. Luan, F. Lv, and P. K. Chu, J. Mater. Chem. A 1, 884 (2013).

    Article  Google Scholar 

  12. X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando, and T. Tanaka, Nanotechnology 23, 455705 (2012).

    Article  Google Scholar 

  13. K. Yu, H. Wang, Y. Zhou, Y. Bai, and Y. Niu, J. Appl. Phys. 113, 034105 (2013).

    Article  Google Scholar 

  14. R. Jan, P. May, A. P. Bell, A. Habib, U. Khan, and J. N. Coleman, Nanoscale 6, 4889 (2014).

    Article  Google Scholar 

  15. P. May, U. Khan, A. O'Neill, and J. N. Coleman, J. Mater. Chem. 22, 1278 (2012).

    Article  Google Scholar 

  16. X. Huang, X. Qi, F. Boey, and H. Zhang, Chem. Soc. Rev. 41, 666 (2011).

    Article  Google Scholar 

  17. J. Shang, Y. Zhang, L. Yu, B. Shen, F. Lv, and P. K. Chu, Mater. Chem. Phys. 134, 867 (2012).

    Article  Google Scholar 

  18. M. Roy, J. K. Nelson, R. K. MacCrone, L. S. Schadler, C. W. Reed, R. Keefe, and W. Zenger, IEEE T Dielect. El. In. 12, 629 (2005).

    Article  Google Scholar 

  19. J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H. Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, and V. Nicolosi, Science 331, 568 (2011).

    Article  Google Scholar 

  20. U. Khan, A. O'Neill, H. Porwal, P. May, K. Nawaz, and J. N. Coleman, Carbon 50, 470 (2012).

    Article  Google Scholar 

  21. M. Lotya, P. J. King, U. Khan, S. De, and J. N. Coleman, ACS Nano 4, 3155 (2010).

    Article  Google Scholar 

  22. A. O'Neill, U. Khan, and J. N. Coleman, Chem. Mater. 24, 2414 (2012).

    Article  Google Scholar 

  23. P. May, U. Khan, J. M. Hughes, and J. N. Coleman, J. Phys. Chem. C 116, 11393 (2012).

    Article  Google Scholar 

  24. G. E. Padawer and N. Beecher, Polym. Eng. Sci. 10, 185 (1970).

    Article  Google Scholar 

  25. S. Maiti, N. K. Shrivastava, S. Suin, and B. B. Khatua, Express Polym. Lett. 7, 505 (2013).

    Article  Google Scholar 

  26. J. Belattar, M. P. F. Graça, L. C. Costa, M. E. Achour, and C. Brosseau, J. Appl. Phys. 107, 124111 (2010).

    Article  Google Scholar 

  27. A. Osak, Ferroelectrics 418, 52 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Jan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, R., Habib, A., Abbassi, H. et al. Dielectric spectroscopy of high aspect ratio graphene-polyurethane nanocomposites. Electron. Mater. Lett. 11, 225–231 (2015). https://doi.org/10.1007/s13391-014-4265-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-014-4265-5

Keywords

Navigation