Skip to main content
Log in

Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This study reports the structural and magnetic properties of CeO2 nanoparticles synthesized using a simple thermal decomposition method. The samples show room-temperature ferromagnetism (RT-FM) when thermally decomposed at above 500°C. Ferromagnetic ordering occurs due to the presence of Ce3+ as confirmed by transmission electron microscopy (TEM) and x-ray absorption near edge spectroscopy (XANES). High resolution TEM results also reveal the Ce2O3 (Ce3+) phase can be attributed to the formation of defects/oxygen vacancies at its surface. The F-center exchange interaction has been proposed as playing an important role in the magnetic behavior of the prepared CeO2 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Prellier, A. Fouchet, and B. Mercey, J. Phys.: Condens. Matter 15, R1583 (2003).

    Google Scholar 

  2. N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73, 132404 (2006).

    Article  Google Scholar 

  3. X. Chen, G. Li, Y. Su, X. Qui, L. Li, and Z. Zou, Nanotechnology 20, 115606 (2009).

    Article  Google Scholar 

  4. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature 430, 630 (2004).

    Article  Google Scholar 

  5. R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, and E. Saitovitch, Appl. Phys. Lett. 98, 092510 (2011).

    Article  Google Scholar 

  6. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B 72, 024450 (2005).

    Article  Google Scholar 

  7. R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).

    Article  Google Scholar 

  8. Q. Xu, Z. Wen, L. Xu, J. Gao, D. Wu, K. Shen, T. Qiu, S. Tang, and M. Xu, Physica B 406, 19 (2011).

    Article  Google Scholar 

  9. X. Xue, L. Liu, Z. Wang, and Y. Wu, J. Appl. Phys. 115, 033902 (2014).

    Article  Google Scholar 

  10. A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. N. R. Rao, Phys. Rev. B 74, 161306 R (2006).

    Article  Google Scholar 

  11. J. M. D. Coey, Curr. Opin. Solid State Mater. Sci. 10, 83 (2006).

    Article  Google Scholar 

  12. B. Vodungbo, Y. Zheng, F. Vidal, D. Demaille, V. H. Etgens, and D. H. Mosca, Appl. Phys. Lett. 90, 062510 (2007).

    Article  Google Scholar 

  13. J. Conesa, Surf. Sci. 339, 337 (1995).

    Article  Google Scholar 

  14. A. Tiwari, V. M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, and A. Gupta, Appl. Phys. Lett. 88, 142511 (2006).

    Article  Google Scholar 

  15. Y. Q. Song, H. W. Zhang, Q. Y. Wen, Y. X. Li, and J. Q. Xiao, Chin. Phys. Lett. 24, 218 (2007).

    Article  Google Scholar 

  16. Q. Y. Wen, H. W. Zhang, Y. Q. Song, Q. H. Yang, H. Zhu, and J. Q. Xiao, J. Phys.: Condens. Matter 19, 246205 (2007).

    Google Scholar 

  17. A. Thurber, K. M. Reddy, V. Shutthanandan, M. H. Engelhard, C. Wang, J. Hays, and A. Punnoose, Phys. Rev. B 76, 165206 (2007).

    Article  Google Scholar 

  18. K. Noipa, S. Labuayai, E. Swatsitang, and S. Maensiri, Elec. Mater. Lett. 10, 147 (2014).

    Article  Google Scholar 

  19. S. Maensiri, C. Marsingboon, P. Loakul, W. Jareonboon, V. Promarak, P. L. Anderson, and S. Seraphin, Cryst. Growth Des. 7, 950 (2007).

    Article  Google Scholar 

  20. M. Gharagozlou, Chem. Cent. J. 5, 19 (2011).

    Article  Google Scholar 

  21. S. Deshpande, S. Patil, S-VNT. Kuchibhatla, and S. Seal, Appl. Phys. Lett. 87, 133113 (2005).

    Article  Google Scholar 

  22. A. H. Morshed, M. E. Moussa, S. M. Bedair, R. Leonard, S. X. Liu, and N. El-Masry, Appl. Phys. Lett. 70, 1647 (1997).

    Article  Google Scholar 

  23. S. Sathyamurthy, K. J. Leonard, R. T. Dabestani, and M. P. Paranthaman, Nanotechnology 16, 1960 (2005).

    Article  Google Scholar 

  24. J. Hormes, M. Pantelouris, G. B. Balazs, and B. Rambaby, Solid State Ionics 136, 945 (2000).

    Article  Google Scholar 

  25. F. Zhang, P. Wang, J. Koberstein, S. Khalid, and S. W. Chan, Surf. Sci. 563, 74 (2004).

    Article  Google Scholar 

  26. J. Zhang, Z. Wu, T. Liu, T. Hu, Z. Wu, and X. Ju, J. Synchrotron Rad. 8, 531 (2001).

    Article  Google Scholar 

  27. P. Nachimuthu, W. C. Shih, R. S. Liu, L. Y. Jang, and J. M. Chen, J. Solid State Chem. 149, 408 (2000).

    Article  Google Scholar 

  28. M. Y. Ge, H. Wang, E. Z. Liu, J. F. Liu, J. Z. Jiang, Y. K. Li, Z. A. Xu, and H. Y. Li, Appl. Phys. Lett. 93, 062505 (2008).

    Article  Google Scholar 

  29. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi Maensiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phokha, S., Swatsitang, E. & Maensiri, S. Room-temperature ferromagnetism in pure CeO2 nanoparticles prepared by a simple direct thermal decomposition. Electron. Mater. Lett. 11, 1012–1020 (2015). https://doi.org/10.1007/s13391-015-4164-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-015-4164-4

Keywords

Navigation