Skip to main content
Log in

Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

CuSbS2 nanocrystals have been synthesized through mechanical alloying Cu, Sb and S elemental powders for 40 hs. The optical spectrum of as-milled CuSbS2 nano-powders demonstrates a direct gap of 1.35 eV and an indirect gap of 0.36 eV, which are similar to that of silicon and reveals the evidence for the indirect semiconductor characterization of CuSbS2. Afterwards, CuSbS2 nanocrystals were capped with trioctylphosphine oxide/trioctylphosphine/pyridine (TOPO/TOP). There appear four sharp absorption peaks within the region of 315 to 355 nm for the dispersion solution containing the capped nanocrystals. The multiple peaks are proposed to be originating from the energy level splitting of 1S electronic state into four discrete sub-levels, where electrons were excited into the conduction band and thus four exciton absorption peaks were produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. V. Kovalenko, M. Scheele, and D. V. Talapin, Science 324, 1417 (2009).

    Article  Google Scholar 

  2. S. Li, Z. Zhao, Q. Liu, L. Huang, G. Wang, D. Pan, H. Zhang, and X. He, Inorg. Chem. 50, 11985 (2011).

    Google Scholar 

  3. M. D. Regulacio and M. Y. Han, Acc. Chem. Res. 43, 621 (2010).

    Article  Google Scholar 

  4. X. G. Peng, Acc. Chem. Res. 43, 1387 (2010).

    Article  Google Scholar 

  5. M. A. Malik, M. Afzaal, and P. O’Brien, Chem. Rev. 110, 4417 (2010).

    Article  Google Scholar 

  6. K. S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris, and E. S. Aydil, Nano Lett. 7, 1793 (2007).

    Article  Google Scholar 

  7. S. Smith, P. Zhang, T. Gessert, and A. Mascarenhas, Appl. Phys. Lett. 85, 3854 (2004).

    Article  Google Scholar 

  8. C. Bertoni, D. Gallardo, S. Dunn, N. Gaponik, and A. Eychmuller, Appl. Phy. Lett. 90, 0341071 (2007).

    Article  Google Scholar 

  9. B. Pukowska, J. Jaglarz, B. Such, T. Wagnerc, A. Kisiela, and A. Mycielski, J. Alloys Compd. 335, 35 (2002).

    Article  Google Scholar 

  10. M. Q. Chu, M. X. Song, D. Cheng, S. P. Liu, and J. Zhu, Nanotechnology 17, 5428 (2006).

    Article  Google Scholar 

  11. D. Y. Xu, S. L. Shen, Y. J. Zhang, H. W. Gu, and Q. B. Wang, Inorg. Chem. 52, 12958 (2013).

    Article  Google Scholar 

  12. M. V. Kovalenko, M. Scheele, and D. V. Talapin, Science 324, 1417 (2009).

    Article  Google Scholar 

  13. S. Manolache, A. Duta, L. Isac, M. Nanu, A. Goossens, and A. Schoonma, Thin Solid Films 515, 5957 (2007).

    Article  Google Scholar 

  14. B. D. Weil, S. T. Connor, and Y. Cui, J. Am. Chem. Soc. 132, 6642 (2010).

    Article  Google Scholar 

  15. J. van Embden, K. Latham, N. W. Duffy, and Y. Tachibana, J. Am. Chem. Soc. 135, 11562 (2013).

    Article  Google Scholar 

  16. J. Zhou, G. Q. Bian, Q. Y. Zhu, Y. Zhang, C. Y. Li, and J. Dai, J. Sol. Stat. Chem. 182, 259 (2009).

    Article  Google Scholar 

  17. Y. Rodríguez-Lazcano, M. T. S. Nair, and P. K. Nair, J. Cry. Grow. 223, 399 (2001).

    Article  Google Scholar 

  18. B. Yang, L. Wang, and J. Han, Chem. Mater. 26, 3135 (2014).

    Article  Google Scholar 

  19. Q. Zhang, H. H. Zhang, and G. L. Tan, Electron. Mater. Lett. 11, 187 (2015).

    Article  Google Scholar 

  20. R. E. Bailey and S. J. Nie, J. Am. Chem. Soc. 125, 7100 (2003).

    Article  Google Scholar 

  21. Y. C. Cao and J. H. Wang, J. Am. Chem. Soc. 126, 14336 (2004).

    Article  Google Scholar 

  22. I. J. Lin and S. Nadiv, Mater. Sci. Eng. 39, 193 (1979).

    Article  Google Scholar 

  23. P. G. McCormick, T. Tsuzuki, and J. S. Robinson, J. Ding, Adv. Mater. 13, 1008 (2001).

    Article  Google Scholar 

  24. Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen, and Z. F. Ren, Nano Lett. 8, 2580 (2008).

    Article  Google Scholar 

  25. J. L. Guimarães, M. Abbate, S. B. Betim, and M. C. M. Alves, J. Alloys Compd. 352, 16 (2003).

    Article  Google Scholar 

  26. G. L. Tan, U. Hommerich, D. Temple, N. Q. Wu, J. G. Zheng, and G. Louts, Script. Mater. 48, 1469 (2003).

    Article  Google Scholar 

  27. G. L. Tan, J. H. Du, and Q. J. Zhang, J. Alloys Compd. 468, 421 (2009).

    Article  Google Scholar 

  28. G. L. Tan, L. Zhang, and X. F. Yu, J. Phy. Chem. C 114, 290 (2009).

    Article  Google Scholar 

  29. P. Balaz, L. Takacs, T. Ohtani, D. E. Mack, E. Boldizarova, V. Soika, and M. Achimovicova, J. Alloys Compd. 434-435, 773 (2007).

    Article  Google Scholar 

  30. P. M. Allen, W. H. Liu, V. P. Chauhan, J. Lee, A. Y. Ting, D. Fukumura, R. K. Jain, and M. G. Bawendi, J. Am. Chem. Soc. 132, 2909 (2010).

    Google Scholar 

  31. G. L. Tan, S. H. Li, J. B. Murowchick, C. Wisner, N. Leventis, and Z. H. Peng, J. Appl. Phy. 110, 1243061 (2011).

    Google Scholar 

  32. J. T. R. Dufton, A. Walsh, P. M. Panchmatia, L. M. Peter, D. Colombara, and M. S. Islam, Phy. Chem. Chem. Phy. 14, 7229 (2012).

    Article  Google Scholar 

  33. C. Yan, Z. Su, E. Gu, T. Cao, J. Yang, J. Liu, F. Liu, Y. Lai, J. Li, and Y. Liu, J. Mater. Sci. Mater. Electron. 26, 1932 (2015).

    Article  Google Scholar 

  34. K. Ramasamy, H. Sims, W. H. Butler, and A. Gupta, J. Am. Chem. Soc. 136, 1587 (2014).

    Article  Google Scholar 

  35. G. L. Tan, Y. Chen, and X. F. Yu, Nanotechnology 21, 338 (2010).

    Article  Google Scholar 

  36. L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guolong Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Xu, Q. & Tan, G. Physical preparation and optical properties of CuSbS2 nanocrystals by mechanical alloying process. Electron. Mater. Lett. 12, 568–573 (2016). https://doi.org/10.1007/s13391-016-6075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6075-4

Keywords

Navigation