Skip to main content
Log in

Architectural modifications for flexible supercapacitor performance optimization

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

We have developed material and architectural alternatives for flexible supercapacitors and investigated their effect on practical performance. The substrate alternatives include paperboard as well as various polyethylene terephthalate (PET) films and laminates, with aqueous NaCl electrolyte used in all devices. In all the supercapacitors, activated carbon is used as the active layer and graphite ink as the current collector, with various aluminium or copper structures applied to enhance the current collectors’ conductivity. The capacitance of the supercapacitors was between 0.05 F and 0.58 F and their equivalent series resistance (ESR) was from <1 Ω to 14 Ω, depending mainly on the current collector structure. Furthermore, leakage current and selfdischarge rates were defined and compared for the various architectures. The barrier properties of the supercapacitor encapsulation have a clear correlation with leakage current, as was clearly shown by the lower leakage in devices with an aluminium barrier layer. A cycle life test showed that after 40000 charge-discharge cycles the capacitance decreases by less than 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer US, Boston, USA (1999).

    Book  Google Scholar 

  2. M. Lu, F. Béguin, and E. Frackowiak, Supercapacitors: Materials, Systems, and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2013).

    Google Scholar 

  3. R. Moscatiello, SGIA J. (1st Quarter) 25 (2005).

    Google Scholar 

  4. B. Dyatkin, V. Presser, M. Heon, M. R. Lukatskaya, M. Beidaghi, and Y. Gogotsi, ChemSusChem. 6, 2269 (2013).

    Article  Google Scholar 

  5. J. Keskinen, E. Sivonen, S. Jussila, M. Bergelin, M. Johansson, A. Vaari, and M. Smolander, Electrochim. Acta 85, 302 (2012).

    Article  Google Scholar 

  6. S. Lehtimäki, S. Tuukkanen, J. Pörhönen, P. Moilanen, J. Virtanen, M. Honkanen, and D. Lupo, Appl. Phys. A 117, 1329 (2014).

    Article  Google Scholar 

  7. K. Torvinen, S. Lehtimäki, J. T. Keränen, J. Sievänen, J. Vartiainen, E. Hellén, D. Lupo, and S. Tuukkanen, Electron. Mater. Lett. 11, 1040 (2015).

    Article  Google Scholar 

  8. J. Keskinen, E. Sivonen, M. Bergelin, J. E. Eriksson, P. Sjöberg-Eerola, M. Valkiainen, M. Smolander, A. Vaari, J. Uotila, H. Boer, and S. Tuurala, Adv. Sci. Technol. 72, 331 (2010).

    Article  Google Scholar 

  9. B. C. Kim, J.-Y. Hong, G. G. Wallace, and H. S. Park, Adv. Energy Mater. 5, n/a (2015).

  10. A. El Hajj, T. M. Kraft, B. Lucas, M. Schirr-Bonnans, B. Ratier, and P. Torchio, J. Appl. Phys. 115, 033103 (2014).

    Article  Google Scholar 

  11. Y. H. Lee, J. S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T. S. Kim, J. Y. Lee, and J. W. Choi, Nano Lett. 13, 5753 (2013).

    Article  Google Scholar 

  12. Z. Cui, F. R. Poblete, G. Cheng, S. Yao, X. Jiang, and Y. Zhu, J. Mater. Res. 30, 79 (2015).

  13. J. Bae, M. K. Song, Y. J. Park, J. M. Kim, M. Liu, and Z. L. Wang, Angew. Chemie - Int. Ed. 50, 1683 (2011).

    Article  Google Scholar 

  14. Z. Yang, J. Deng, X. Chen, J. Ren, and H. Peng, Angew. Chemie - Int. Ed. 52, 13453 (2013).

    Article  Google Scholar 

  15. T. Kim, H. Song, J. Ha, S. Kim, D. Kim, S. Chung, J. Lee, and Y. Hong, Appl. Phys. Lett. 104, 113103 (2014).

    Article  Google Scholar 

  16. J. Pörhönen, S. Rajala, S. Lehtimäki, and S. Tuukkanen, IEEE Trans. Electron Devices 61, 3303 (2014).

    Article  Google Scholar 

  17. S. Lehtimäki, M. Li, J. Salomaa, J. Pörhönen, A. Kalanti, S. Tuukkanen, P. Heljo, K. Halonen, and D. Lupo, Int. J. Electr. Power Energy Syst. 58, 42 (2014).

    Article  Google Scholar 

  18. F. Pettersson, J. Keskinen, T. Remonen, L. von Hertzen, E. Jansson, K. Tappura, Y. Zhang, C.-E. Wilén, and R. Österbacka, J. Power Sources 271, 298 (2014).

    Article  Google Scholar 

  19. D. Wei, S. J. Wakeham, T. Wing, M. J. Thwaites, H. Brown, P. Beecher, T. W. Ng, M. J. Thwaites, H. Brown, and P. Beecher, Electrochem. Commun. 11, 2285 (2009).

    Article  Google Scholar 

  20. M. Kaempgen, C. K. Chan, J. Ma, Y. Cui, and G. Gruner, Nano Lett. 9, 1872 (2009).

    Article  Google Scholar 

  21. K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, and Y. Gogotsi, Energy Environ. Sci. 4, 5060 (2011).

    Article  Google Scholar 

  22. L. Hu, H. Wu, and Y. Cui, Appl. Phys. Lett. 96, 183502 (2010).

    Article  Google Scholar 

  23. L. T. Le, M. H. Ervin, H. Qiu, B. E. Fuchs, and W. Y. Lee, Electrochem. Commun. 13, 355 (2011).

    Article  Google Scholar 

  24. P. Kossyrev, J. Power Sources 201, 347 (2012).

    Article  Google Scholar 

  25. S. Lawes, A. Riese, Q. Sun, N. Cheng, and X. Sun, Carbon N. Y. 92, 150 (2015).

    Article  Google Scholar 

  26. O. S. Nissen, H. C. Beck, and M. Schou, Patent No. 6,341,057 (2002).

    Google Scholar 

  27. J. Lang, US Patent 6937460 B2 (2005).

    Google Scholar 

  28. C. Z. Meng, C. H. Liu, L. Z. Chen, C. H. Hu, and S. S. Fan, Nano Lett. 10, 4025 (2010).

    Article  Google Scholar 

  29. J. Keskinen, S. Tuurala, M. Sjödin, K. Kiri, L. Nyholm, T. Flyktman, M. Strømme, and M. Smolander, Synth. Met. 203, 192 (2015).

    Article  Google Scholar 

  30. V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, and P. M. Ajayan, Proc. Natl. Acad. Sci. U. S. A. 104, 13574 (2007).

    Article  Google Scholar 

  31. C. Portet, P. L. Taberna, P. Simon, and C. Laberty-Robert, Electrochim. Acta 49, 905 (2004).

    Article  Google Scholar 

  32. International Standard: Fixed Electric Double Layer Capacitors for Use in Electronic Equipment, IEC 62391-2-1 (2006).

  33. M. Hahn, P. Furrer, B. Schnyder, M. Baertsch, R. Koetz, O. Haas, C. Ohler, and M. W. Carlen, in Proc. 10th Int. Semin. Double Layer Capacit. Similar Energy Storage Devices Deerfield Beach, pp. 1–12, Florida, USA (2000).

    Google Scholar 

  34. M. Kaus, J. Kowal, and D. U. Sauer, Electrochim. Acta 55, 7516 (2010).

    Article  Google Scholar 

  35. J. Black and H. Andreas, Electrochim. Acta 54, 3568 (2009).

    Article  Google Scholar 

  36. B. E. Conway, W. G. Pell, and T.-C. Liu, J. Power Sources 65, 53 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jari Keskinen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keskinen, J., Lehtimäki, S., Dastpak, A. et al. Architectural modifications for flexible supercapacitor performance optimization. Electron. Mater. Lett. 12, 795–803 (2016). https://doi.org/10.1007/s13391-016-6141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6141-y

Keywords

Navigation