Skip to main content
Log in

Hydrogen gas detection using MOS capacitor sensor based on palladium nanoparticles-gate

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In this study a palladium nanoparticles-gate MOS capacitor hydrogen sensor with Pd/SiO2/Si structure has been fabricated. The palladium nanoparticles by chemical method are synthesized and then characterized by transmission electron microscope (TEM), X-ray diffraction (XRD) and UV-VIS spectrum. Also, the preferred orientation and grain size of the palladium nanoparticles have been studied. Hydrogen absorption and desorption of the palladium nanoparticles at the low and high pressure and as function of time have been investigated. The sensing mechanism of the hydrogen detection by MOS capacitor sensor has been explained and theoretical and experimental results have been compared. At 287 K, compared to another Pd MOS capacitor hydrogen sensor and ultrathin Pd MOS capacitor, the palladium nanoparticles gate MOS capacitor showed much faster response and recovery speed. The time interval for reaching to 95% of the steady state signal magnitude (t95%) for 1% and 2% hydrogen in nitrogen were 2 s and 1.5 s respectively. The time interval for recovery transients from 95% to 10% of steady state signal magnitude (t10%) for 1% and 2% hydrogen in nitrogen were 10 s and 11 s respectively. The presented sensor illustrates a designing of hydrogen detectors with very fast response and recovery speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Carcassi and F. Fineschi, Energy 30, 1439 (2005).

    Article  Google Scholar 

  2. R. Ramachandran and R. K. Menon, Int. J. Hydrogen Energy 23, 593 (1998).

    Article  Google Scholar 

  3. T. A. Czuppon, S. A. Knez, and D. S. Newsome, Hydrogen. Kirk-Othmer Encyclopedia of Chemical Technology (J. I. Kroschwitz and M. Howe-Grant, Eds.), 13, p. 884, John Wiley and Sons, New York, USA (1996).

  4. W. J. Buttner, M. B. Post, R. Burgess, and C. Rivkin, Int. J. Hydrogen Energy 36, 2462 (2011).

    Article  Google Scholar 

  5. L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hubert, and U. Banach, Int. J. Hydrogen Energy 35, 373 (2010).

    Article  Google Scholar 

  6. T. Hubert, L. Boon-Brett, G. Black, and U. Banach, Sensor. Actuat. B-Chem. 157, 329 (2011).

    Article  Google Scholar 

  7. I. Lundstrom, M. Shivaraman, M. Svensson, and L. Lundkvist, Appl. Phys. Lett. 26, 55 (1975).

    Article  Google Scholar 

  8. I. Lundstrom, M. Shivaraman, and M. Svensson, J. Appl. Phys. 46, 3876 (1975).

  9. I. Lundstrom, Sensor. Actuator. 1, 403 (1981).

    Article  Google Scholar 

  10. E. Lee, J. Lee, J. Noh, W. Kim, T. Lee, S. Maeng, and W. Lee, Int. J. Hydrogen Energy 37, 14702 (2012).

    Article  Google Scholar 

  11. S. Linke, M. Dallmer, R. Werner, and W. Moritz, Int. J. Hydrogen Energy 37, 17523 (2012).

    Article  Google Scholar 

  12. P. Pandey, J. Srivastava, V. Mishra, and R. Dwivedi, Solid State Sci. 11, 1370 (2009).

    Article  Google Scholar 

  13. C. Lu, Z. Chen, and K. Saito, Sensor. Actuat. B-Chem. 122, 556 (2007).

    Article  Google Scholar 

  14. F. A. Lewis, The Palladium Hydrogen System, Academic press, New York, USA (1967).

    Google Scholar 

  15. L. Fekri Aval, S. M. Elahi, E. Darabi, and S. A. Sebt, Sensor. Actuat. B-Chem. 216, 367 (2015).

    Article  Google Scholar 

  16. M. Ramanathan, G. Skudlarek, H. H. Wang, and S. B. Darling, Nanotechnology 21, 125501 (2010).

    Article  Google Scholar 

  17. M. Khanuja, D. Varandani, and B. R. Mehta, Appl. Phys. Lett. 91, 253121 (2007).

    Article  Google Scholar 

  18. H. Firouzabadi, N. Iranpoor, and A. Ghaderi, J. Mol. Catal. A-Chem. 347, 38 (2011).

    Article  Google Scholar 

  19. http://www.sciencelab.com/ Material Safety Data Sheet Palladium chloride MSDS

  20. K. K. R. Datta, M. Eswaramoorthy, and C. N. R. Rao, J. Mater. Chem. 17, 613 (2007).

  21. K. Mallikarjuns, N. J. Sushma, G. Narasimha, K. V. Rao, L. Manoj, and B. D. P. Raju, Proc. Nanoscience, Engineering and Technology (ICONSET), 2011 International Conference, pp. 612–615, IEEE, Tamilnadu, India (2011).

    Google Scholar 

  22. G. Zhang, H. Zhou, J. Hu, M. Liu, and Y. Kuang, Green Chem. 11, 1428 (2009).

    Article  Google Scholar 

  23. http://host.simagis.com

  24. P. K. Khanna and D. Kulkarni, Metal-Organic, and Nano- Metal Chemistry 38, 629 (2008).

    Google Scholar 

  25. N. Basavegowda, K. Mishra, and Y. Rok Lee, New J. Chem. 39, 972 (2014).

  26. A. Jyothi Kora and L. Rastogi, Arabian J. Chem. (In press).

  27. S. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, and T. Hyeon, Nano Lett. 3, 1289 (2003).

    Article  Google Scholar 

  28. Y. Wang, Y. Zhao, W. He, J. Yin, and Y. Su, Thin Solid Films 544, 88 (2013).

    Article  Google Scholar 

  29. C. C. Wang, D. H. Chen, and T.-C. Huang, Colloid. Surface. A 189, 145 (2001).

    Article  Google Scholar 

  30. P. S. Roy, J. Bagchi, and S. K. Bhattacharya, Transit. Metal Chem. 34, 447 (2009).

    Article  Google Scholar 

  31. H. Savaloni, M. Gholipour-Shahraki, and M. A. Player, J. Phys. D: Appl. Phys. 39, 2231 (2006).

    Article  Google Scholar 

  32. E. Howard, M. Swanson, M. C. Morris, P. R. Stinchfild, and E. H. Evans, Standard X-ray Differction Powder Patterns 1, 22 (1985).

    Google Scholar 

  33. A. L. Paterson, Phy. Rev. 56, 978 (1939).

    Article  Google Scholar 

  34. H. Savaloni and R. Babaei, Appl. Surf. Sci. 280, 439 (2013).

    Article  Google Scholar 

  35. F. A. Lewis, Platin. Met. Rev. 26, 121 (1982).

    Google Scholar 

  36. G. A. Frazier and R. Glosser, J. Less-Common Met. 74, 89 (1980).

    Article  Google Scholar 

  37. S. Kishore, J. A. Nelson, J. H. Adair, and P. C. Eklund, J. Alloy. Compd. 389, 234 (2005).

    Article  Google Scholar 

  38. E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley, New York, USA (1982).

    Google Scholar 

  39. H. Bentarzi, Transport in Metal-Oxide-Semiconductor structure; Mobile Ions Effects on the Oxide Properties, pp.1–28, Springer, New York, USA (2011).

    Google Scholar 

  40. W. S. Ruska, Microelectronic Processing, McGraw-Hill, New York, USA (1987).

    Google Scholar 

  41. S. M. Sze, Physics of Semiconductor Devices, Willey, New York, USA (1987).

    Google Scholar 

  42. B. Deal, J. Electrochem. Soc.: Reviews and News 121, 198 (1974).

    Article  Google Scholar 

  43. B. Deal, IEEE Transactions on Electron Devices 27, 606 (1980).

    Article  Google Scholar 

  44. S. Wolf and R. Tauber, Silicon Processing, Vol. 1, Lattice press, Sunset Beach, USA (1986).

    Google Scholar 

  45. A. Tataroglu, S. Altindaland, and M. M. Bulbul, Microelectron. Eng. 81, 140 (2005).

    Article  Google Scholar 

  46. P. Pandey, J. Srivastava, V. Mishra, and R. Dwivedi, Solid State Sci. 11, 1370 (2009).

    Article  Google Scholar 

  47. CRC Handbook of Chemistry and Physics Version, pp. 12- 114, CRC Press, Florida (2008).

  48. J. L. Autran, D. Munteanu, R. Dinescu, and M. Houssa, J. Non-Cryst. Solids 322, 219 (2003).

    Article  Google Scholar 

  49. M. C. Steele, J. W. Hile, and B. A. MacIver, J. Appl. Phys. 47, 2537 (1976).

    Article  Google Scholar 

  50. J. Fogelberg, M. Eriksson, H. M. Dannetun, and L. G. Petersson, J. Appl. Phys. 78, 988 (1995).

    Article  Google Scholar 

  51. M. Eriksson and L. G. Ekedahl, Sensor. Actuat. B-Chem. 42, 217 (1997).

    Article  Google Scholar 

  52. I. Lundstrom and T. Distefano, Surf. Sci. 59, 23 (1976).

    Article  Google Scholar 

  53. C. Lu, Z. Chen, and K. Saito, Sensor. Actuat. B-Chem. 122, 556 (2007).

    Article  Google Scholar 

  54. D. Dwivedi, R. Dwivedi, and S. K. Srivastava, Sensor. Actuat. B-Chem. 71, 161 (2000).

    Article  Google Scholar 

  55. G. Jordan, IEEE Trans. Electron. Dev. 32, 1158 (1985).

    Article  Google Scholar 

  56. B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, and M. Han, Sensor. Actuat. A-Phys. 181, 20 (2012).

    Article  Google Scholar 

  57. J. S. Seybold, Introduction to RF Propagation, p. 22, John Wiley & Sons, New Jersey, USA (2005).

    Book  Google Scholar 

  58. K. J. Rakesh, S. Krishnan, M. Yoshimura, and A. Kumar, Nanoscale Res. Lett. 4, 1191 (2009).

    Article  Google Scholar 

  59. A. Sieverts, Zeitschrift für Metallkunde 21, 37 (1929).

    Google Scholar 

  60. C. K. Gupta, Chemical Metallurgy: Principles and Practice, p. 273, Wiley-VCH, Weinhiem, Germany (2003).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mohammad Elahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aval, L.F., Elahi, S.M. Hydrogen gas detection using MOS capacitor sensor based on palladium nanoparticles-gate. Electron. Mater. Lett. 13, 77–85 (2017). https://doi.org/10.1007/s13391-017-6147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6147-0

Keywords

Navigation