Skip to main content
Log in

Investigation of structural, spectral and photometric properties of CaTiO3:Dy3+ nanophosphors for the lighting applications

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A series of perovskite CaTiO3:Dy3+ nanophosphors have been prepared via solid state reaction method in order to investigate the structural, spectral and photometric properties. The structural, morphological and spectral properties of prepared nanophosphors were systematically characterized by XRD, FESEM, EDX, Photoluminescence, PL decay time and UV-Visible spectroscopy. The novel CaTiO3:Dy3+ nanophosphors exhibited single phase orthorhombic structure with space group Pbnm. The high magnification FESEM images of prepared sample demonstrated the particle size in the range 220-240 nm. The photoluminescence properties of Dy3+ doped CaTiO3 nanophosphors were investigated through excitation, emission spectra and decay time by varying the concentration of activator (Dy3+). Under the excitation of 386 nm UV light, Dy3+ activated CaTiO3 nanophosphors exhibited its characteristic excellent intense emissions in blue and yellow region around the wavelength 484 and 575 nm due to the transition 4F9/26H15/2 and 4F9/26H13/2 respectively. The photometric parameters such as CIE-coordinate and correlated color temperature (CCT) was also calculated. The CIE- coordinate (0.28, 0.32) was found near white light and CCT value was found to be 9222.31 K for optimum composition Ca0.96TiO3:0.04Dy3+ which was useful for cold light emission. The affirmative experimental results indicated that the prepared nanophosphors could be the favorable candidate for lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Parchur and R. S. Ningthoujam, RSC Adv. 2, 10859 (2012).

    Article  Google Scholar 

  2. D. P. Dutta, A. Ballal, J. Ballal, J. Nuwad, and A. K. Tyagi, J. Lumin. 148, 230 (2014).

    Article  Google Scholar 

  3. K. A. Koparkar, N. S. Bajaj, and S. K. Omanwer, Electron. Mater. Lett. 11, 303 (2015).

    Article  Google Scholar 

  4. W. Yang, S. H. Kim, and S. Park, J. Alloys Compd. 673, 1 (2016).

    Article  Google Scholar 

  5. Y. Jin, M. H. Fang, M. Grinberg, S. Mahlik, T. Lesniewski, M. G. Brik, G. Y. Luo, J. G. Lin, and R. S. Liu, ACS Appl. Mater. Interfaces 8, 11194 (2016).

    Article  Google Scholar 

  6. F. A. Ponce and D. P. Bour, Nature 351, 386 (1997).

    Google Scholar 

  7. Y. Cong, B. Li, S. Yue, Y. Liu, and W. Li, J. Phys. Chem. C 113, 493 (2009).

    Article  Google Scholar 

  8. G. Jia, P. A. Tanner, C. K. Duan, and J. D. Ghys, J. Phys. Chem. C 114, 2769 (2010).

    Article  Google Scholar 

  9. W. Wu and Z. Xia, RSC Adv. DOI 10.1039/CRA40313K.

  10. K. Lemanski and P. J. Deren, J. Lumin. 145, 661 (2014).

    Article  Google Scholar 

  11. T. Kyomen, R. Sakamato, N. Sakmato, S. Kunugi, and M. Itoh, Chem. Mater. 17, 3200 (2005).

    Article  Google Scholar 

  12. I. P. Sahu, P. Chandrakar, R. N. Baghel, D. P. Bisen, N. Brahme, and R. K. Tamrakar, J. Alloys Compd. 649, 1329 (2015).

    Article  Google Scholar 

  13. S. Dutta, S. Som, and S. K. Sharma, Dalton. Trans. 42, 9654 (2013).

    Article  Google Scholar 

  14. Y. Zhai, M. Wang, Q. Zhao, J. Yu, and X. Li, J. Lumin. 172, 161 (2016).

    Article  Google Scholar 

  15. P. Zeng, L.Yu, Z. Qiu, J. Zhang, C. Rong, C. Li, Z. Fu, and S. Lian, J. Sol-Gel Sci. Technol. 64, 315 (2012).

    Article  Google Scholar 

  16. F. Liu, Y. Fang, N. Zhang, G. Zhao, and Y. Liu, J. Mater. Sci.: Mater. Electron. 26, 3933 (2015).

    Google Scholar 

  17. P. K. Baitha and J. Manam, OPTIK 126, 4916 (2015).

    Article  Google Scholar 

  18. K. Lemanski and P. J. Deren, J. Lumin 145, 661 (2014).

    Article  Google Scholar 

  19. S. Kumar and A. K. Ojha, J. Alloys Compd. 644, 654 (2015).

    Article  Google Scholar 

  20. Y. Wang, X. Liu, L. Jing, and P. Niu, CERAM INT. http://dx.doi.org/10.1016/j.ceramint.2016.05.075

  21. M. Chowdhury and S. K. Sharma, RSC Adv. 5, 51102 (2015).

  22. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).

    Article  Google Scholar 

  23. Y. Liu, G. Liu, J. Wang, X. Dong, and W. Yu, Inorg. Chem. 53, 11457 (2014).

    Article  Google Scholar 

  24. P. Kumari and J. Manam, J. Matter. Sci.: Mater. Electron., DOI 10.1007/s10854-016-4990-7.

  25. V. Mahalingam, J. Thirumalai, R. Krishnan, and R. Chandramohan, Electron. Mater. Lett. DOI 10.1007/s13391-015-5248-x.

  26. S. Dutta, S. Som, and S. K. Sharma, Dalton. Trans. 42, 9654 (2013).

    Article  Google Scholar 

  27. G. Blasse, J. Solid State Chem. 62, 207 (1986).

    Article  Google Scholar 

  28. D. L. Dexter, J.Chem. Phy. 21, 836 (1954).

    Article  Google Scholar 

  29. S. Dutta, S. Som, and S. K. Sharma, RSC Adv. 5, 7380 (2015).

    Article  Google Scholar 

  30. A. K. Vishwakarma, K. Jha, M. Jayasimhadri, B. Sivaiah, B. Gahtori, and D. Haranath, Dalton. Trans. 44, 17166 (2015).

    Article  Google Scholar 

  31. Q. Shao, H. Li, Y. Dong, J. Jiang, C. Liang, and J. He, J. Alloys Compd. 498, 199 (2010).

    Article  Google Scholar 

  32. J. S. Kim, Y. H. Park, S. M. Kim, J. C. Choi, and H. L. Park, Solid State Commun. 133, 445 (2005).

    Article  Google Scholar 

  33. J. Singh and J. Manam, Mater. Res. Bull. 88, 105 (2017).

    Article  Google Scholar 

  34. P. Kumari and J. Manam, Spectrochim Acta A 109, 152 (2015).

    Google Scholar 

  35. D. K. Singh and J. Manam, Appl. Phys. A 122, 668 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jairam Manam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D.K., Manam, J. Investigation of structural, spectral and photometric properties of CaTiO3:Dy3+ nanophosphors for the lighting applications. Electron. Mater. Lett. 13, 292–301 (2017). https://doi.org/10.1007/s13391-017-6285-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-017-6285-4

Keywords

Navigation