Skip to main content
Log in

Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Röntgen, W.C.: On a new kind of rays. Science 3, 227–231 (1896)

    Article  Google Scholar 

  2. Curie, P.: Sur une nouvelle substance fortement radioactive, contenue dans la pechblende. Comt. Rend. 127, 1215–1217 (1898)

    CAS  Google Scholar 

  3. Khan, F.M.: The Physics of Radiation Therapy, 2nd edn. Williams & Wilkins, Baltimore (1994)

    Google Scholar 

  4. Jang, K.W., Cho, D.H., Yoo, W.J., Seo, J.K., Heo, J.Y., Park, J.Y., Lee, B.: Fiber-optic radiation sensor for detection of tritium. Nucl. Instrum. Methods A 652(1), 928–931 (2011)

    Article  CAS  Google Scholar 

  5. Schlesinger, T.E., James, R.B.: Semiconductors for room temperature nuclear applications. Academic Press, New York (1995)

    Google Scholar 

  6. Cerrito, L.: Radiation and Detectors: Introduction to the Physics of Radiation and Detection Devices. Springer, Cham (2017)

    Book  Google Scholar 

  7. Fadel, T.R., Farrell, D.F., Friedersdorf, L.E., Griep, M.H., Hoover, M.D., Meador, M.A., Meyyappan, M.: Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 1, 207–216 (2016)

    Article  CAS  Google Scholar 

  8. Serry, M., Sharaf, A., Emira, A., Abdul-Wahed, A., Gamal, A.: Nanostructured graphene-Schottky junction low-bias radiation sensors. Sens. Actuators A 232, 329–340 (2015)

    Article  CAS  Google Scholar 

  9. Li, F.M.H., Malliakas, C.D., Liu, Z., Chung, D.Y., Wessels, B., Kanatzidis, M.G.: Mercury chalcohalide semiconductor Hg3Se2Br2 for hard radiation detection. Cryst. Growth Des. 16(11), 6446–6453 (2016)

    Article  CAS  Google Scholar 

  10. Ahmadi, M., Yeow, J.T.: Fabrication and characterization of a radiation sensor based on bacteriorhodopsin. Biosens. Bioelectron. 26, 2171 (2011)

    Article  CAS  Google Scholar 

  11. Griffith, J.A., Bayer, T.S.: Bio-inspired chemical sensor of gamma and neutron radiation. Sens. Actuators B 190, 818 (2014)

    Article  CAS  Google Scholar 

  12. Ahmadi, M., Osei, E.K., Yeow, J.T.W.: Bacteriorhodopsin for superficial X-ray sensing. Sens. Actuators B 166, 177 (2012)

    Article  CAS  Google Scholar 

  13. Ade, N.: An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays. Appl. Radiat. Isot. 127, 237 (2017)

    Article  CAS  Google Scholar 

  14. Yilmaz, E., Kaleli, B., Turan, R.: A systematic study on MOS type radiation sensors. Nucl. Instrum. Methods B 264, 287 (2007)

    Article  CAS  Google Scholar 

  15. Pérez, B.M., Isabel, G., Ivana, A., Bentos, P.H., Laura, F.: HgI2 nanostructures obtained hydrothermally for application in ionizing radiation detection. J. Phys. D Appl. Phys. 49(44), 445309 (2016)

    Article  CAS  Google Scholar 

  16. de Andrés, A.I., Esteban, Ó., Embid, M.: Improved extrinsic polymer optical fiber sensors for gamma-ray monitoring in radioprotection applications. Opt. Laser Technol. 93, 201 (2017)

    Article  CAS  Google Scholar 

  17. Abubakar, S., Kaya, S., Karacali, H., Yilmaz, E.: The gamma irradiation responses of yttrium oxide capacitors and first assessment usage in radiation sensors. Sens. Actuators A 258, 44 (2017)

    Article  CAS  Google Scholar 

  18. Carlson, J.S., Marleau, P., Zarkesh, R.A., Feng, P.L.: Taking advantage of disorder: small-molecule organic glasses for radiation detection and particle discrimination. J. Am. Chem. Soc. 139, 9621 (2017)

    Article  CAS  Google Scholar 

  19. Carlson, J.S., Marleau, P., Zarkesh, R.A., Feng, P.L.: Effective contact potential of thin film metal-insulator nanostructures and its role in self-powered nanofilm X-ray sensors. J. Am. Chem. Soc. 139, 9621 (2017)

    Article  CAS  Google Scholar 

  20. Lee, K.S., Hong, B., Lee, K., Park, S.K., Yu, J., Kim, S.Y.: Development of thin gaseous ionization detectors for measurements of high-energy hadron beams. J. Korean Phys. Soc. 64(7), 958 (2014)

    Article  CAS  Google Scholar 

  21. Chepel, V., Araújo, H.: Liquid noble gas detectors for low energy particle physics. J. Instrum. 8(4), R04001 (2013)

    Article  CAS  Google Scholar 

  22. Seco, J., Clasie, B., Partridge, M.: Review on the characteristics of radiation detectors for dosimetry and imaging. Phys. Med. Biol. 59(20), R303 (2014)

    Article  Google Scholar 

  23. Yanagisawa, S., Shinsho, K., Inoue, M., Koba, Y., Matsumoto, K., Ushiba, H., Andoh, T.: Applicability of two-dimensional thermoluminescence slab dosimeter based on Al2O3: Cr for the quality assurance of robotic radiosurgery. Radiat. Meas. 106, 326–330 (2017)

    Article  CAS  Google Scholar 

  24. Martin, T., Koch, A., Nikl, M.: Scintillator materials for x-ray detectors and beam monitors. MRS Bull. 42(6), 451 (2017)

    Article  Google Scholar 

  25. Niu, L.B., Li, Y.L., Zhang, L., Fu, J.Q., Jiang, H., He, B., Li, Y.J.: Performance simulation and structure design of Binode CdZnTe gamma-ray detector. Nucl. Sci. Technol. 25, 010406 (2014)

    Google Scholar 

  26. Gandhi, T., Raja, K.S., Misra, M. In: Proceedings of SPIE, vol. 6959, p. 695904 (2008)

  27. Owens, A., Peacock, A.: Compound semiconductor radiation detectors. Nucl. Instrum. Methods A 531(1), 18 (2004)

    Article  CAS  Google Scholar 

  28. Knoll, G.F.: Radiation Detection and Measurement. Wiley, New York (2010)

    Google Scholar 

  29. Nikl, M.: Scintillation detectors for x-rays. Meas. Sci. Technol. 17, R37 (2006)

    Article  CAS  Google Scholar 

  30. Kozma, P., Kozma, P.: Radiation sensitivity of GSO and LSO scintillation detectors. Nucl. Instrum. Methods A. 539(1), 132 (2005)

    Article  CAS  Google Scholar 

  31. Arshak, K., Korostynska, O.: Advanced Materials and Techniques for Radiation Dosimetry. Artech House, Norwood (2006)

    Google Scholar 

  32. Wei, H., Fang, Y., Mulligan, P., Chuirazzi, W., Fang, H.H., Wang, C., Huang, J.: Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photonics 10, 333 (2016)

    Article  CAS  Google Scholar 

  33. Im, J., Jin, H., Li, H., Peters, J.A., Liu, Z., Wessels, B.W., Freeman, A.J.: Formation of native defects in the γ-ray detector material Cs2Hg6S7. Appl. Phys. Lett. 101(20), 202103 (2012)

    Article  CAS  Google Scholar 

  34. Li, H., Malliakas, C.D., Peters, J.A., Liu, Z., Im, J., Jin, H., Kanatzidis, M.G.: CsCdInQ3 (Q = Se, Te): new photoconductive compounds as potential materials for hard radiation detection. Chem. Mater. 25, 2089 (2013)

    Article  CAS  Google Scholar 

  35. Li, H., Malliakas, C.D., Han, F., Chung, D.Y., Kanatzidis, M.G.: TlHgInS3: an Indirect-band-gap semiconductor with X-ray photoconductivity response. Chem. Mater. 27(15), 5417 (2015)

    Article  CAS  Google Scholar 

  36. Li, H., Peters, J.A., Liu, Z., Sebastian, M., Malliakas, C.D., Androulakis, J., Wessels, B.W.: Crystal growth and characterization of the X-ray and γ-ray detector material Cs2Hg6S7. Cryst. Growth Des. 12, 3250 (2012)

    Article  CAS  Google Scholar 

  37. Wibowo, A.C., Malliakas, C.D., Li, H., Stoumpos, C.C., Chung, D.Y., Wessels, B.W., Kanatzidis, M.G.: An unusual crystal growth method of the chalcohalide semiconductor, β-Hg3S2Cl2: a new candidate for hard radiation detection. Cryst. Growth Des. 16(5), 2678 (2016)

    Article  CAS  Google Scholar 

  38. Li, H., Malliakas, C.D., Liu, Z., Peters, J.A., Jin, H., Morris, C.D., Kanatzidis, M.G.: CsHgInS3: a New quaternary semiconductor for γ-ray detection. Chem. Mater. 24, 4434 (2012)

    Article  CAS  Google Scholar 

  39. Schlesinger, T.E., Toney, J.E., Yoon, H., Lee, E.Y., Brunett, B.A., Franks, L., James, R.B.: Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. B 32, 103 (2001)

    Article  Google Scholar 

  40. Nguyen, S.L., Malliakas, C.D., Peters, J.A., Liu, Z., Im, J., Zhao, L.D., Wessels, B.W.: Photoconductivity in Tl6SI4: a novel semiconductor for hard radiation detection. Chem. Mater. 25, 2868 (2013)

    Article  CAS  Google Scholar 

  41. Wibowo, A.C., Malliakas, C.D., Liu, Z., Peters, J.A., Sebastian, M., Chung, D.Y., Kanatzidis, M.G.: Photoconductivity in the chalcohalide semiconductor, SbSeI: a new candidate for hard radiation detection. Inorg. Chem. 52, 7045 (2013)

    Article  CAS  Google Scholar 

  42. He, Y., Kontsevoi, O.Y., Stoumpos, C.C., Trimarchi, G., Islam, S.M., Liu, Z., Kim, J.I.: Defect antiperovskite compounds Hg3Q2I2 (Q = S, Se, and Te) for room-temperature hard radiation detection. J. Am. Chem. Soc. 139, 7939 (2017)

    Article  CAS  Google Scholar 

  43. Han, H., Hong, M., Gokhale, S.S., Sinnott, S.B., Jordan, K., Baciak, J.E., NinoJ, J.C.: Defect engineering of BiI3 single crystals: enhanced electrical and radiation performance for room temperature gamma-ray detection. Phys. Chem. C 118, 3244 (2014)

    Article  CAS  Google Scholar 

  44. Liu, Z., Peters, J.A., Wessels, B.W., Johnsen, S., Kanatzidis, M.G.: Thallous chalcogenide (Tl6I4Se) for radiation detection at X-ray and γ-ray energies. Nucl. Instrum. Methods A. 659(1), 333 (2011)

    Article  CAS  Google Scholar 

  45. Wang, P.L., Liu, Z., Chen, P., Peters, J.A., Tan, G., Im, J., Kanatzidis, M.G.: Hard radiation detection from the selenophosphate Pb2P2Se6. Adv. Funct. Mater. 25(30), 4874 (2015)

    Article  CAS  Google Scholar 

  46. Islam, S.M., Vanishri, S., Li, H., Stoumpos, C.C., Peters, J.A., Sebastian, M., Freeman, A.J.: Cs2Hg3S4: a low-dimensional direct bandgap semiconductor. Chem. Mater. 27(1), 370 (2014)

    Article  CAS  Google Scholar 

  47. Johnsen, S., Liu, Z., Peters, J.A., Song, J.H., Peter, S.C., Malliakas, C.D., Kanatzidis, M.G.: Thallium chalcogenide-based wide-band-gap semiconductors: TlGaSe2 for radiation detectors. Chem. Mater. 23(12), 3120 (2011)

    Article  CAS  Google Scholar 

  48. Del Sordo, S., Abbene, L., Caroli, E., Mancini, A.M., Zappettini, A., Ubertini, P.: Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9(5), 3491 (2009)

    Article  CAS  Google Scholar 

  49. Malm, H.L., Raudorf, T.W., Martini, M., Zanio, K.R.: Gamma ray efficiency comparisons for Si(Li), Ge, CdTe and HgI2 detectors. IEEE Trans. Nucl. Sci. 20(1), 500 (1973)

    Article  CAS  Google Scholar 

  50. McGregor, D.S., Hermon, H.: Room-temperature compound semiconductor radiation detectors. Nucl. Instrum. Methods A. 395(1), 101 (1997)

    Article  CAS  Google Scholar 

  51. Nava, F., Bertuccio, G., Cavallini, A., Vittone, E.: Silicon carbide and its use as a radiation detector material. Meas. Sci. Technol. 19(10), 102001 (2008)

    Article  CAS  Google Scholar 

  52. Wang, P.L., Kostina, S.S., Meng, F., Kontsevoi, O.Y., Liu, Z., Chen, P., Freeman, A.J.: Refined synthesis and crystal growth of Pb2P2Se6 for hard radiation detectors. Cryst. Growth Des. 16(9), 5100 (2016)

    Article  CAS  Google Scholar 

  53. Takahashi, T., Watanabe, S.: Recent progress in CdTe and CdZnTe detectors. IEEE Trans. Nucl. Sci. 48(4), 950 (2001)

    Article  CAS  Google Scholar 

  54. Pennicard, D., Pirard, B., Tolbanov, O., Iniewski, K.: Semiconductor materials for x-ray detectors. MRS Bull. 42(6), 445 (2017)

    Article  Google Scholar 

  55. Dhanaraj, G., Byrappa, K., Prasad, V., Dudley, M.: Springer Handbook of Crystal Growth. Springer, Wurtzburg (2010)

    Book  Google Scholar 

  56. Kestigian, M., Bollong, A.B., Derby, J.J., Glass, H.L., Harris, K., Hettich, H.L., Wadley, H.: Cadmium zinc telluride substrate growth, characterization, and evaluation. J. Electron. Mater. 28(6), 726 (1999)

    Article  CAS  Google Scholar 

  57. Milbrath, B.D., Peurrung, A.J., Bliss, M., Weber, W.J.: Radiation detector materials: an overview. J. Mater. Res. 23(10), 2561 (2008)

    Article  CAS  Google Scholar 

  58. Yeckel, A., Doty, F.P., Derby, J.J.: Effect of steady crucible rotation on segregation in high-pressure vertical Bridgman growth of cadmium zinc telluride. J. Cryst. Growth 203(1), 87 (1999)

    Article  CAS  Google Scholar 

  59. Owens, A.: Compound Semiconductor Radiation Detectors. Taylor & Francis, Boca Raton (2016)

    Google Scholar 

  60. Sang, L., Liao, M., Sumiya, M.: A Comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures. Sensors 13, 10482 (2013)

    Article  CAS  Google Scholar 

  61. Ariyoshi, T., Funaki, S., Sakamoto, K., Baba, A., Arima, Y.: X-ray-to-current signal conversion characteristics of trench-structured photodiodes for direct-conversion-type silicon X-ray sensor. Jpn. J. Appl Phys. 56, 04 (2017)

    Article  Google Scholar 

  62. Phlips, B.F., Johnson, W.N., Kroeger, R.A., Kurfess J.D.: Development of thick intrinsic silicon detectors for hard X-ray and gamma-ray detection. In: 2001 IEEE Nuclear Science Symposium Conference Record, vol. 1, p. 207 (2001)

  63. Hitomi, K., Shoji, T., Ishii, K.: Advances in TlBr detector development. J. Cryst. Growth 379, 93 (2013)

    Article  CAS  Google Scholar 

  64. Shah, K.S., Lund, J.C., Olschner, F., Moy, L., Squillante, M.R.: Thallium bromide radiation detectors. IEEE Trans. Nucl. Sci. 36(1), 199 (1989)

    Article  CAS  Google Scholar 

  65. Kim, H., Churilov, A., Ciampi, G., Cirignano, L., Higgins, W., Kim, S., Shah, K.: Continued development of thallium bromide and related compounds for gamma-ray spectrometers. Nucl. Instrum. Methods A 629(1), 192 (2011)

    Article  CAS  Google Scholar 

  66. Nason, D., Keller, L.: The Growth and crystallography of bismuth tri-iodide crystals grown by vapor transport. J. Cryst. Growth 156(3), 221 (1995)

    Article  CAS  Google Scholar 

  67. Fornaro, L., Cuna, A., Noguera, A., Perez, M., Mussio, L.: Growth of bismuth tri-iodide platelets for room temperature X-ray detection. IEEE Trans. Nucl. Sci. 51, 2461 (2004)

    Article  CAS  Google Scholar 

  68. Matsumoto, M., Hitomi, K., Shoji, T., Hiratate, Y.: Bismuth tri- iodide crystal for nuclear radiation detectors. IEEE Trans. Nucl. Sci. 49, 2517 (2002)

    Article  CAS  Google Scholar 

  69. Squillante, M.R., Shah, K.S., Moy, L.: Stabiluzation of Hgl2 X-ray detectors. Nucl. Instrum. Methods A288, 79 (1990)

    Article  CAS  Google Scholar 

  70. Mohammed-Brahim, T., Friant, A., Mellet, J.: Structure mis effects on polarization of HgI2 crystals used for gamma and X-ray detection. IEEE Trans. Nucl. Sci. 32(1), 581 (1985)

    Article  Google Scholar 

  71. Van Scyoc, J.M., James, R.B., Schlesinger, T.E., Gilbert, T.S., Schieber, M.: Characterization of silver impurities in mercuric iodide and their relationship to γ-ray-detector performance. J. Cryst. Growth 166(1), 384 (1996)

    Article  Google Scholar 

  72. Owens, A., Bavdaz, M., Brammertz, G., Krumrey, M., Martin, D., Peacock, A., Tröger, L.: The hard X-ray response of HgI2Nucl. Nucl. Instrum. Methods A 479(2), 535 (2002)

    Article  CAS  Google Scholar 

  73. Gerrish, V.: Polarization and gain in mercuric iodide gamma-ray spectrometers. Nucl. Instrum. Methods A. 322(3), 402 (1992)

    Article  Google Scholar 

  74. Ponpon, J.P., Sieskind, M.: Recent advances in γ- and X-ray spectrometry by means of mercuric iodide detectors. Nucl. Instrum. Methods A 380(1), 173 (1996)

    Article  CAS  Google Scholar 

  75. Meng, L.J., He, Z., Alexander, B., Sandoval, J.: Spectroscopic performance of thick HgI2 detectors. IEEE Trans. Nucl. Sci. 53(3), 1706 (2006)

    Article  CAS  Google Scholar 

  76. Matuchova, M., Zdansky, K., Zavadil, J., Maixner, J., Alexiev, D., Prochazkova, D.: Study of lead iodide semiconductor crystals doped with silver. Mater. Sci. Semicond. Proc. 9(1), 394 (2006)

    Article  CAS  Google Scholar 

  77. Schlesinger, T.E., James, R.B., Schieber, M., Toney, J., Van Scyoc, J.M., Salary, L., Cross, E.: Characterization of lead iodide for nuclear spectrometers. Nucl. Instrum. Methods A 380(1), 193 (1996)

    Article  CAS  Google Scholar 

  78. Deich, M.R.V.: Improved performance lead iodide nuclear radiation detectors. Nucl. Instrum. Methods A 380(1), 169–172 (1996)

    Article  CAS  Google Scholar 

  79. Lund, J.C., Shah, K.S., Squillante, M.R., Moy, L.P., Sinclair, F., Entine, G.: Properties of lead iodide semiconductor radiation detectors. Nucl. Instrum. Methods A283, 299 (1989)

    Article  CAS  Google Scholar 

  80. Lund, J.C., Shah, K.S., Olschner, F., Zhang, J., Moy, L., Medrick, S., Squillante, M.R.: Recent progress in lead iodide X-ray spectrometer development. Nucl. Instrum. Methods A 322(3), 464 (1992)

    Article  Google Scholar 

  81. Deich, V., Roth, M.: Improved performance lead iodide nuclear radiation detectors. Nucl. Instrum. Methods A380, 169 (1996)

    Article  Google Scholar 

  82. Shah, K.S., Olschner, F., Moy, L.P., Bennett, P., Misra, M., Zhang, J., Lund, J.C.: Lead iodide X-ray detection systems. Nucl. Instrum. Methods A380, 266 (1996)

    Article  Google Scholar 

  83. Abbene, L., Gerardi, G., Turturici, A.A., Raso, G., Benassi, G., Bettelli, M., Principato, F.: X-ray response of CdZnTe detectors grown by the vertical Bridgman technique: energy, temperature and high flux effects. Nucl. Instrum. Methods A 835, 1 (2016)

    Article  CAS  Google Scholar 

  84. Lin, W., Stoumpos, C.C., Liu, Z., Das, S., Kontsevoi, O.Y., He, Y., Kanatzidis, M.G.: TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature. ACS Photon. 4(7), 1805 (2017)

    Article  CAS  Google Scholar 

  85. Li, W., Li, Z., Zhu, S., Yin, S., Zhao, B., Chen, G.: Improved method for HgI2 crystal growth and detector fabricatio. Nucl. Instrum. Methods A 370(2), 435 (1996)

    Article  CAS  Google Scholar 

  86. Hayashi, T., Kinpara, M., Wang, J.F., Mimura, K., Isshiki, M.: Growth of PBI2 single crystals from stoichiometric and Pb excess melts. J. Cryst. Growth 310(1), 47 (2008)

    Article  CAS  Google Scholar 

  87. Stoumpos, C.C., Malliakas, C.D., Peters, J.A., Liu, Z., Sebastian, M., Im, J., Wessels, B.W.: Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst. Growth Des. 13, 2722 (2013)

    Article  CAS  Google Scholar 

  88. Li, S.L., Tsukagoshi, K., Orgiu, E., Samorì, P.: Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. Chem. Soc. Rev. 45(1), 118 (2016)

    Article  CAS  Google Scholar 

  89. Webb, A.W., Qadri, S.B., Carpenter Jr., E.R., Skelton, E.F., Kennedy, J.: Effects of pressure on Cd1−xZnxTe alloys (0 ≤ x < 0.5). J. Appl. Phys. 61(7), 2492 (1987)

    Article  CAS  Google Scholar 

  90. Butler, J.F., Doty, F.P., Apotovsky, B., Lajzerowicz, J., Verger, L.: Gamma- and X-ray detectors manufactured from Cd1−xZnx Te grown by a high pressure bridgman method. Mater. Sci. Eng. B 16(1), 291 (1993)

    Article  Google Scholar 

  91. Sellin, P.J.: Recent advances in compound semiconductor radiation detectors. Nucl. Instrum. Methods A 513(1), 332 (2003)

    Article  CAS  Google Scholar 

  92. Olego, D.J., Faurie, J.P., Sivananthan, S., Raccah, P.M.: Optoelectronic properties of Cd1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates. Appl. Phys. Lett. 47(11), 1172 (1985)

    Article  CAS  Google Scholar 

  93. Androulakis, J., Peter, S.C., Li, H., Malliakas, C.D., Peters, J.A., Liu, Z., Kanatzidis, M.G.: Dimensional reduction: a design tool for new radiation detection materials. Adv. Mater. 23(36), 4163 (2011)

    Article  CAS  Google Scholar 

  94. Kocsis, M.: Proposal for a new room temperature X-ray detector-thallium lead iodide. IEEE Trans. Nucl. Sci. 47(6), 1945 (2000)

    Article  CAS  Google Scholar 

  95. Hitomi, K., Onodera, T., Shoji, T., Hiratate, Y.: Thallium lead iodide radiation detectors. In: 2002 IEEE Nuclear Science Symposium Conference Record, vol. 1, p. 485 (2002)

  96. Das, S., Peters, J.A., Lin, W., Kostina, S.S., Chen, P., Kim, J.I., Wessels, B.W.: Charge transport and observation of persistent photoconductivity in Tl6SeI4 single crystals. J. Phys. Chem. Lett. 8(7), 1538 (2017)

    Article  CAS  Google Scholar 

  97. Johnsen, S., Liu, Z., Peters, J.A., Song, J.H., Nguyen, S., Malliakas, C.D., Kanatzidis, M.G.: J Thallium chalcohalides for X-ray and γ-ray detection. Am. Chem. Soc. 133(26), 10030 (2011)

    Article  CAS  Google Scholar 

  98. Yakunin, S., Dirin, D.N., Shynkarenko, Y., Morad, V., Cherniukh, I., Nazarenko, O., Kovalenko, M.V.: Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nat. Photon. 10(9), 585 (2016)

    Article  CAS  Google Scholar 

  99. Náfrádi, B., Náfrádi, G., Forró, L., Horváth, E.: Methylammonium lead iodide for efficient X-ray energy conversion. J. Phys. Chem. C 119(45), 25204 (2015)

    Article  CAS  Google Scholar 

  100. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting Tin and Lead Iodide perovskites with organic cations: phase transitions, high Mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019 (2013)

    Article  CAS  Google Scholar 

  101. Wang, S., Liu, Z., Peters, J.A., Sebastian, M., Nguyen, S.L., Malliakas, C.D., Kanatzidis, M.G.: Crystal growth of Tl4CdI6: a wide band gap semiconductor for hard radiation detection. Cryst. Growth Des. 14, 2401 (2014)

    Article  CAS  Google Scholar 

  102. Li, H., Malliakas, C.D., Liu, Z., Peters, J.A., Sebastian, M., Zhao, L., Kanatzidis, M.G.: Investigation of semi-insulating Cs2Hg6S7 and Cs2Hg6−xCdxS7 alloy for hard radiation detection. Cryst. Growth Des. 14(11), 5949 (2014)

    Article  CAS  Google Scholar 

  103. Vetter, K.: Multi-sensor radiation detection, imaging, and fusion. Nucl. Instrum. Methods A 805, 127 (2016)

    Article  CAS  Google Scholar 

  104. Suzuki, T., Miyata, H., Katsumata, M., Nakano, S., Matsuda, K., Tamura, M.: Organic semiconductors as real-time radiation detectors. Nucl. Instrum. Methods A 763, 304 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A6A1A03013422).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Sub Kim or Hyoun Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, A., Huh, JS., Kim, S.S. et al. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview. Electron. Mater. Lett. 14, 261–287 (2018). https://doi.org/10.1007/s13391-018-0033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0033-2

Keywords

Navigation