Skip to main content
Log in

Soft, Self-Assembly Liquid Crystalline Nanocomposite for Superior Switching

  • Original Article – Nanomaterials
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Liquid crystal (LC) has long been a feature in Materials Science and Nanotechnology, have recently been extended into the appealing domain of complex hybrid materials. The crystalline structural effects of alkoxy chain lengths and the mesogen properties of hydrogen-bonded (n-OBASA) complexes (n = 5,6,7) have been investigated in recent studies. The LC-based hybrid nanocomposite materials–obtained by the homogeneous dispersion of zinc oxide nanowires (ZnO NWs) as a dopant into hydrogen-bonded liquid-crystalline compounds—seem to be particularly promising in this article. Optimizing the geometry of surface stabilizing electro-optic, LC cell reveals the typical intermolecular hydrogen bond (H-bond) formation. Here, we explore molecular-colloidal hybrid composite matrix formed from LCs and dilute dispersions of orientation-ordered ZnO NWs, for eventual potential application in smart switchable display devices. In addition, we investigated the structural, dielectric and optical properties of the nanocomposite, and electro-optical studies which were performed by exploiting the potential during the conditions before the opening of spectrum acquisition. Our novel findings confirm that the electric field induces a charge transfer of the LC molecules to the nanomaterial, which acts as a trap for ionic charges. This effect may be utilized to achieve superior switching operation that is electro-optically tunable. Such dynamic novel switching could be harnessed in smart LCD technology and pave the way towards innovative display modulation techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kato, T., Mizoshita, N., Kishimoto, K.: Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. 45(1), 38–68 (2006)

    Article  Google Scholar 

  2. Goodby, J.W., et al.: Transmission and amplification of information and properties in nanostructured liquid crystals. Angew. Chem. Int. Ed. 47(15), 2754–2787 (2008)

    Article  Google Scholar 

  3. Tschierske, C.: Liquid crystal engineering–new complex mesophase structures and their relations to polymer morphologies, nanoscale patterning and crystal engineering. Chem. Soc. Rev. 36(12), 1930–1970 (2007)

    Article  Google Scholar 

  4. Newsome, C., et al.: Laser etched gratings on polymer layers for alignment of liquid crystals. Appl. Phys. Lett. 72(17), 2078–2080 (1998)

    Article  Google Scholar 

  5. Kagajyo, T., et al.: Alignment of nematic liquid crystal molecules using nanometer-sized ultrafine patterns by electron beam exposure method. Jpn. J. Appl. Phys. 44(1S), 578 (2005)

    Article  Google Scholar 

  6. Varghese, S., et al.: Microrubbing technique to produce high pretilt multidomain liquid crystal alignment. Appl. Phys. Lett. 85(2), 230–232 (2004)

    Article  Google Scholar 

  7. Rüetschi, M., et al.: Creation of liquid crystal waveguides with scanning force microscopy. Science 265(5171), 512–514 (1994)

    Article  Google Scholar 

  8. Suh, D., Choi, S.J., Lee, H.H.: Rigiflex lithography for nanostructure transfer. Adv. Mater. 17(12), 1554–1560 (2005)

    Article  Google Scholar 

  9. Kim, S.R., et al.: Fabrication of polymeric substrates with well-defined nanometer-scale topography and tailored surface chemistry. Adv. Mater. 14(20), 1468–1472 (2002)

    Article  Google Scholar 

  10. Park, H.-G., et al.: Homeotropic alignment of liquid crystals on a nano-patterned polyimide surface using nanoimprint lithography. Soft Matter 7(12), 5610–5614 (2011)

    Article  Google Scholar 

  11. Bouteiller, L., Barny, P.L.: Polymer-dispersed liquid crystals: preparation, operation and application. Liq. Cryst. 21(2), 157–174 (1996)

    Article  Google Scholar 

  12. Spruce, G., Pringle, R.: Polymer dispersed liquid crystal (PDLC) films. Electron. Commun. Eng. J. 4(2), 91–100 (1992)

    Article  Google Scholar 

  13. Crawford, G.P., Zumer, S.: Liquid Crystals in Complex Geometries: Formed by Polymer and Porous Networks. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  14. Armitage, D., Underwood, I., Wu, S.-T.: Introduction to Microdisplays, vol. 11. Wiley, Hoboken (2006)

    Book  Google Scholar 

  15. Crawford, G.: Flexible Flat Panel Displays, p. 290. Wiley, Chichester (2005)

    Book  Google Scholar 

  16. Hinojosa, A., Sharma, S.C.: Effects of gold nanoparticles on electro-optical properties of a polymer-dispersed liquid crystal. Appl. Phys. Lett. 97(8), 081114 (2010)

    Article  Google Scholar 

  17. Bozhevolnyi, S.I., Universitet, A., Shalaev, V.: Nanophotonics with surface plasmons-Part I. Photonics Spectra 40(1), 58 (2006)

    Google Scholar 

  18. Shalaev, V.M.: Nanophotonics with Surface Plasmons—Part ll. Photonics Spectra (2006)

  19. Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003)

    Article  Google Scholar 

  20. Pal, K., et al.: Design, synthesis and application of hydrogen bonded smectic liquid crystal matrix encapsulated ZnO nanospikes. J. Mater. Chem. C 3(45), 11907–11917 (2015)

    Article  Google Scholar 

  21. Pal, K., et al.: Influence of ZnO nanostructures in liquid crystal interfaces for bistable switching applications. Appl. Surf. Sci. 357, 1499–1510 (2015)

    Article  Google Scholar 

  22. Pal, K., et al.: Optical and electrical investigation of ZnO nano-wires array centre micro-flowers turn to hierarchical nano-rose structures. J. Nanosci. Nanotechnol. 15, 1–10 (2016)

    Google Scholar 

  23. Pal, K., et al.: Synthetic strategy of porous ZnO and CdS nanostructures doped ferroelectric liquid crystal and its optical behavior. J. Mol. Struct. 1035, 76–82 (2013)

    Article  Google Scholar 

  24. Jiao, M., et al.: Alignment layer effects on thin liquid crystal cells. Appl. Phys. Lett. 92(6), 061102 (2008)

    Article  Google Scholar 

  25. Lu, S.-Y., Chien, L.-C.: Carbon nanotube doped liquid crystal OCB cells: physical and electro-optical properties. Opt. Express 16(17), 12777–12785 (2008)

    Article  Google Scholar 

  26. Toney, M.F., et al.: Near-surface alignment of polymers in rubbed films. Nature 374(6524), 709 (1995)

    Article  Google Scholar 

  27. Orbitals, I.F.F.: Organic Chemical Reactions. Wiley, New York (1976)

    Google Scholar 

  28. Ginzburg, V.: Some remarks on phase transitions of the second kind and the microscopic theory of ferroelectric materials. Soviet Phys. Solid State 2, 1824–1834 (1961)

    Google Scholar 

  29. Berlyand, L.: Homogenization of the Ginzburg-Landau functional with a surface energy term. Asymptot. Anal. 21(1), 37–59 (1999)

    Google Scholar 

  30. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices, vol. 13. Springer, Berlin (1994)

    Book  Google Scholar 

  31. Meyer, R.B., et al.: Equilibrium size and textures of islands in free-standing smectic C* films. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 364(1), 123–131 (2001)

    Article  Google Scholar 

  32. Ericksen, J.L.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113(2), 97–120 (1991)

    Article  Google Scholar 

  33. Pal, K., et al.: Functionalized graphene oxide dispersed hydrogen bonded liquid crystals efficient electro-optical switching. J. Display Technol. 12(3), 281–287 (2016)

    Article  Google Scholar 

  34. Pal, K., et al.: Efficient one-step novel synthesis of ZnO nanospikes to nanoflakes doped OAFLCs (W-182) host: optical and dielectric response. Appl. Surf. Sci. 280, 405–417 (2013)

    Article  Google Scholar 

  35. Vijayakumar, V., Murugadass, K., Mohan, M.: Inter hydrogen bonded complexes of hexadecylaniline and alkoxy benzoic acids: a study of crystallization kinetics. Braz. J. Phys. 39(3), 600–605 (2009)

    Article  Google Scholar 

  36. Nakamoto, K., Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, Hoboken (1977)

    Google Scholar 

  37. Vijayakumar, V., Madhu Mohan, M.: Experimental evidence of an optical shutter in cholesteric phase of a double hydrogen bonded liquid crystal. Braz. J. Phys. 39(4), 677–683 (2009)

    Article  Google Scholar 

  38. Guthrie, R.D.: Introduction to Spectroscopy (Pavia, Donald; Lampman, Gary M.; Kriz, George S., Jr.). ACS Publications, Washington (1979)

    Book  Google Scholar 

  39. AL-TURKI, A.M.: Effect of preparation methods on the particles size, dielectric constant and antibacterial properties of ZnO nanoparticles and thin film of ZnO/Chitosan. Orient. J. CHEM. 34(1), 548–554 (2018). https://doi.org/10.13005/ojc/340163

    Article  Google Scholar 

  40. Hsu, S.C., et al.: Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films. Macromol. Chem. Phys. 206(2), 291–298 (2005)

    Article  Google Scholar 

  41. Wu, C., et al.: Morphology-controllable graphene–TiO 2 nanorod hybrid nanostructures for polymer composites with high dielectric performance. J. Mater. Chem. 21(44), 17729–17736 (2011)

    Article  Google Scholar 

  42. Ahmad, K., Pan, W., Wu, H.: High performance alumina based graphene nanocomposites with novel electrical and dielectric properties. RSC Adv. 5(42), 33607–33614 (2015)

    Article  Google Scholar 

  43. Jammula, R.K., et al.: Strong interfacial polarization in ZnO decorated reduced-graphene oxide synthesized by molecular level mixing. Phys. Chem. Chem. Phys. 17(26), 17237–17245 (2015)

    Article  Google Scholar 

  44. Wang, D., et al.: Functionalized graphene–BaTiO 3/ferroelectric polymer nanodielectric composites with high permittivity, low dielectric loss, and low percolation threshold. J. Mater. Chem. A 1(20), 6162–6168 (2013)

    Article  Google Scholar 

  45. Roy, A.K., et al.:, Electrical Properties and AC Conductivity of (Bi 0.5 Na 0.5) 0.94 Ba 0.06 TiO 3 Ceramic. ISRN Ceramics (2012)

  46. Almond, D.P., Bowen, C.: Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Phys. Rev. Lett. 92(15), 157601 (2004)

    Article  Google Scholar 

  47. Bowen, C., Almond, D.P.: Modelling the’universal’dielectric response in heterogeneous materials using microstructural electrical networks. Mater. Sci. Technol. 22(6), 719–724 (2006)

    Article  Google Scholar 

  48. Raghasudha, M., Ravinder, D., Veerasomaiah, P.: Influence of Cr3 + Ion on the Dielectric Properties of Nano Crystalline Mg-Ferrites Synthesized by Citrate-Gel Method. Materials Sciences and Applications 04(07), 7 (2013)

    Article  Google Scholar 

  49. Miller, S., et al.: Device modeling of ferroelectric capacitors. J. Appl. Phys. 68(12), 6463–6471 (1990)

    Article  Google Scholar 

  50. Miller, S., et al.: Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J. Appl. Phys. 70(5), 2849–2860 (1991)

    Article  Google Scholar 

  51. Yang, P., et al.: Electrical properties of SrBi 2 Ta 2 O 9 ferroelectric thin films at low temperature. Appl. Phys. Lett. 81(24), 4583–4585 (2002)

    Article  Google Scholar 

  52. Si, G., et al.: Liquid-crystal-enabled active plasmonics: a review. Materials 7(2), 1296–1317 (2014)

    Article  Google Scholar 

  53. Ma, R., et al.: Synthesis of CdS nanowire networks and their optical and electrical properties. Nanotechnology 18(20), 205605 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

All the associate colleagues and doctoral scholars at Wuhan University, China should gratefully acknowledge by Prof. Kaushik Pal. Especially, sincere thanks to my Bachelor/Masters students, technitians and scientific operators, as well as entire teams of research members should acknowledge during “BK-21 Visiting Scientist” associate position in South Korea. We are grateful to our co-workers Prof. Madhu Mohan and Dr. P. Subhapriya from Liquid Crystals Research Laboratory, BIT Sathyamangalam encouraged for liquid crystal preparation and molecular dynamics performed by ‘Gaussian’ simulation. Sincere ‘Thanks’ will go to Dean (Research) at BIHER, Chennai provides excellence of the research laboratory foundation and co-operation of existing Nanotechnology laboratory. All scientific members are gratefully acknowledged for giving scopes to develop research ideas and scientific innovations. The author M. Abd Elkodous is also grateful to Prof. Radwan (Dean- Research), for giving research friendly scopes at Nile University in Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Pal.

Ethics declarations

Conflict of interest

All the authors have declared that, there is no conflict of any financial interests or authorship to publish the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, K., Sajjadifar, S., Abd Elkodous, M. et al. Soft, Self-Assembly Liquid Crystalline Nanocomposite for Superior Switching. Electron. Mater. Lett. 15, 84–101 (2019). https://doi.org/10.1007/s13391-018-0098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-018-0098-y

Keywords

Navigation