Skip to main content
Log in

Random alloy of Au-Ag bimetallic nanoparticles at room temperature—facile synthesis and vibrational properties

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The synthesis of nanometric alloys, or nanoalloys, is gaining interest in nanoscience due to their new and attractive physical properties. Furthermore, they improve the efficiency and performance of the diverse nanotechnological applications in comparison with the nanostructures composed of only one material. This study presents a novel synthesis method that facilitates the production of Au-Ag random bimetallic nanoalloys with uniform shape at room temperature, using the reducing and stabilizing properties of low-toxicity molecules, such as sucrose, ascorbic acid, and rongalite. The images taken with a transmission electron microscope (TEM) showed spherical bimetallic nanoparticles between 7 and 12 nm. The presence of Au and Ag in the nanostructures was confirmed by EDS. The optical absorption analysis showed a band centered at 480 nm, associated with surface plasmon resonance in Au-Ag nanoalloys. A Raman band was observed around 98 cm−1 after the nanoparticles were synthesized. Additionally, the behavior of the radial breathing modes (RBM) of mixed bimetallic nanoalloys of Au20-n Ag n (con n = 0–20) clusters was analyzed. The analysis was performed with the density functional theory (DFT) at Becke level, three-parameter, Lee-Yang-Parr (B3LYP) in combination with basis set Los Alamos Laboratory 2 double ζ (LANL2DZ). The predicted vibrational modes associated with RBM are located around 90–100 cm−1 approximately. This shows a good tendency and correlation with the Raman band detected experimentally at low wave numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jana S (2015) Advances in nanoscale alloys and intermetallics: low temperature solution chemistry synthesis and application in catalysis. Dalton Trans 44:18692–18717

    Article  Google Scholar 

  2. Calvo F (2015) Thermodynamics of nanoalloys. Phys Chem Chem Phys 17:27922–27939

    Article  Google Scholar 

  3. Mariscal MM, Oviedo O, Lieva EPM (2013) Metal clusters and nanoalloys: From Modeling to applications. Nanostructure Science and Technology, Springer, New York

    Book  Google Scholar 

  4. Alloyeau D, Mottet C, Ricolleau C (2012) Nanoalloys: synthesis, structure and properties, engineering materials. Springer, London

    Book  Google Scholar 

  5. Calvo F (2013) Nanoalloys: from fundamentals to emergent applications. Elsevier, Oxford

    Google Scholar 

  6. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910

    Article  Google Scholar 

  7. Muñoz-Flores BM, Kharisov BI, Jiménez-Pérez VM, Martínez PE, López ST (2011) Recent advances in the synthesis and main applications of metallic nanoalloys. Ind Eng Chem Res 50(13):7705–7721

    Article  Google Scholar 

  8. Shahzad N, Chen F, He L, Li W, Wang H (2015) Silver–copper nanoalloys-an efficient sensitizer for metal-cluster-sensitized solar cells delivering stable current and high open circuit voltage. J Power Sources 294:609–619

    Article  Google Scholar 

  9. Compagninia G, Messinaa E, Puglisia O, Nicolosi V (2007) Laser synthesis of Au/Ag colloidal nano-alloys: optical properties, structure and composition. Appl Surf Sci 254(4):1007–1011

    Article  Google Scholar 

  10. Sotiriou GA, Etterlin GD, Spyrogianni A, Krumeich F, Leroux J-C, Pratsinis SE (2014) Plasmonic biocompatible silver–gold alloyed nanoparticles. Chem Commun 50:13559–13562

    Article  Google Scholar 

  11. Peng Z, Spliethoff B, Tesche B, Walther T, Kleinermanns K (2006) Laser-assisted synthesis of Au−Ag alloy nanoparticles in solution. J Phys Chem B 110(6):2549–2554

    Article  Google Scholar 

  12. Sun L, Luan W, Shan J (2012) A composition and size controllable approach for Au-Ag alloy nanoparticles. Nanoscale Res Lett 7:225

    Article  Google Scholar 

  13. Han Q, Zhang C, Gao W, Han Z, Liu T, Li C, Wang Z, He E, Zheng H (2016) Ag-Au alloy nanoparticles: synthesis and in situ monitoring SERS of plasmonic catalysis. Sensors Actuators B Chem 231:609–614

    Article  Google Scholar 

  14. Taniguchi S, Zinchenko A, Murata S (2016) Fabrication of bimetallic core–shell and alloy Ag–Au nanoparticles on a DNA template. Chem Lett 45(6):610–612

    Article  Google Scholar 

  15. Liu S, Chen G, Prasad PN, Swihart MT (2011) Synthesis of monodisperse Au, Ag, and Au–Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency. Chem Mater 23(18):4098–4101

    Article  Google Scholar 

  16. Zheng B, Zheng J, Yu T, Sang A, Du J, Guo Y, Xiao D, Choi MMF (2015) Fast microwave-assisted synthesis of AuAg bimetallic nanoclusters with strong yellow emission and their response to mercury(II) ions. Sensors Actuators B Chem 221:386–392

    Article  Google Scholar 

  17. Menezes WG, Zielasek V, Dzhardimalieva GI, Pomogailo SI, Thiel K, Wöhrle D, Hartwigd A, Bäumer M (2012) Synthesis of stable AuAg bimetallic nanoparticles encapsulated by diblock copolymer micelles. Nanoscale 4:1658–1664

    Article  Google Scholar 

  18. Malathi S, Ezhilarasu T, Abiraman T, Balasubramanian S (2014) One pot green synthesis of Ag, Au and Au–Ag alloy nanoparticles using isonicotinic acid hydrazide and starch. Carbohydr Polym 111:734–743

    Article  Google Scholar 

  19. Raju D, Mendapara R, Mehta UJ (2014) Protein mediated synthesis of Au–Ag bimetallic nanoparticles. Mater Lett 124:271–274

    Article  Google Scholar 

  20. Rodríguez-González B, Burrows A, Watanabe M, Kiely CJ, Liz Marzán LM (2005) Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties. J Mater Chem 15:1755–1759

    Article  Google Scholar 

  21. Garcia AG, Lopes PP, Gomes JF, Pires C, Ferreira EB, Lucena RGM, Gasparotto LHS, Tremiliosi-Filho G (2014) Eco-friendly synthesis of bimetallic AuAg nanoparticles. New J Chem 38:2865–2873

    Article  Google Scholar 

  22. Mondal S, Roy N, Laskar RA, Sk I, Basu S, Mandal D, Begum NA (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf B: Biointerfaces 82:497–504

    Article  Google Scholar 

  23. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica), leaf broth. J Colloid Interf Sci 275:496–502

    Article  Google Scholar 

  24. Sheny DS, Mathew J, Philip D (2011) Phytosynthesis of Au, Ag and Au–Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochim Acta A 79:254–262

    Article  Google Scholar 

  25. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243

    Article  Google Scholar 

  26. Bankura K, Maity D, Mollick MR, Mondal D, Bhowmick B, Roy I, Midya T, Sarkar J, Rana D, Acharya K, Chattopadhyay D (2014) Antibacterial activity of Ag–Au alloy NPs and chemical sensor property of Au NPs synthesized by dextran. Carbohydr Polym 107:151–157

    Article  Google Scholar 

  27. Huoa D, Heb J, Li H, Yu H, Shi T, Feng Y, Zhou Z, Yong H (2014) Fabrication of Au@Ag core–shell NPs as enhanced CT contrast agents with broad antibacterial properties. Colloids Surf B: Biointerfaces 117:29–35

    Article  Google Scholar 

  28. Ganguly M, Jana J, Pal A, Pal T (2016) Synergism of gold and silver invites enhanced fluorescence for practical applications. RSC Adv 6:17683–17703

    Article  Google Scholar 

  29. Huang H, Li H, Feng J-J, Wang A-J (2016) One-step green synthesis of fluorescent bimetallic Au/Ag nanoclusters for temperature sensing and in vitro detection of Fe3+. Sensors Actuators B Chem 223:550–556

    Article  Google Scholar 

  30. Vinod M, Gopchandran KG (2015) Bimetallic Au–Ag nanochains as SERS substrates. Curr Appl Phys 15:857–863

    Article  Google Scholar 

  31. Paramanik B, Patra A (2014) Fluorescent AuAg alloy clusters: synthesis and SERS applications. J Mater Chem C 2:3005–3012

    Article  Google Scholar 

  32. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264

    Article  Google Scholar 

  33. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y (2012) Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C 116(41):21647–21656

    Article  Google Scholar 

  34. Mahmoud MA, O’Neil D, El-Sayed MA (2014) Shape- and symmetry-dependent mechanical properties of metallic gold and silver on the nanoscale. Nano Lett 14(2):743–748

    Article  Google Scholar 

  35. Kumar S, Anselmo AC, Banerjee A, Zakrewsky M, Mitragotri S (2015) Shape and size-dependent immune response to antigen-carrying nanoparticles. J Control Release 220:141–148

    Article  Google Scholar 

  36. Adnan NNM, Cheng YY, Ong NMN, Kamaruddin TT, Rozlan E, Schmidt TW, Duong HTT, Boyer C (2016) Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym Chem 7:2888–2903

    Article  Google Scholar 

  37. Tanabe I, Ryoki T, Ozaki Y (2015) The effects of Au nanoparticle size (5–60 nm) and shape (sphere, rod, cube) over electronic states and photocatalytic activities of TiO2 studied by far- and deep-ultraviolet spectroscopy. RSC Adv 5:13648–13652

    Article  Google Scholar 

  38. Zhanga H, Toshima N, Takasaki K, Okumurac M (2014) Preparation of Agcore/Aushell bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation. J Alloys Compd 586:462–468

    Article  Google Scholar 

  39. Zhao Q, Chen S, Zhang L, Huang H (2015) Detection of Fe(III) and bio-copper in human serum based on fluorescent AuAg nanoclusters. Anal Methods 7:296–300

    Article  Google Scholar 

  40. Li W, Chen F (2015) Alloying effect on performances of bimetallic Ag–Au cluster sensitized solar cells. J Alloys Compd 632:845–848

    Article  Google Scholar 

  41. Meena Kumari M, Jacob J, Philip D (2015) Green synthesis and applications of Au–Ag bimetallic nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 137:185–192

    Article  Google Scholar 

  42. Wu J, Zan X, Li S, Liu Y, Cui C, Zou B, Zhang W, Xu H, Duan H, Tian D, Huangad W, Huo F (2014) In situ synthesis of large-area single sub-10 nm nanoparticle arrays by polymer pen lithography. Nanoscale 6:749–752

    Article  Google Scholar 

  43. Eugenio M, Müller N, Frasés S, Almeida-Paes R, Lima LMTR, Lemgruber L, Farina M, de Souza W, Sant'Anna C (2016) Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria. RSC Adv 6:9893–9904

    Article  Google Scholar 

  44. Ban Z, Barnakov YA, Li F, Golub VO, O'Connor CJ (2005) The synthesis of core–shell iron@gold nanoparticles and their characterization. J Mater Chem 15:4660–4662

    Article  Google Scholar 

  45. Tsujia M, Takemura K, Shiraishi C, Uto K, Yoshida Y, Daio T (2013) Synthesis of cubic Pd–Ag random alloy nanocrystal in an aqueous solution in the presence of CTAB. Mater Lett 95:201–204

    Article  Google Scholar 

  46. Makarov SV (2001) Recent trends in the chemistry of sulfur-containing reducing agents. Russ Chem Rev 70:885–895

    Article  Google Scholar 

  47. Saadat MAJEED, Dan LI, Wen-Yue GAO, Jian-Ping LAI, Li-Ming QI, Muhammad SAQIB, Guo-Bao XU (2015) Aqueous synthesis of tunable highly photoluminescent CdTe quantum dots using rongalite and bioimaging application. Chin J Anal Chem 43:e101–e107

    Article  Google Scholar 

  48. Sotelo-Lermaa M, Zingaro RA, Castillo SJ (2001) Preparation of CdTe coatings using the chemical deposition method. J Organomet Chem 623:81–86

    Article  Google Scholar 

  49. Khan Z, Singh T, Hussain JI, Hashmi AA (2013) Au(III)–CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Colloids Surf B: Biointerfaces 104:11–17

    Article  Google Scholar 

  50. Filippo E, Serra A, Buccolieri A, Manno D (2010) Green synthesis of silver nanoparticles with sucrose and maltose: morphological and structural characterization. J Non-Cryst Solids 356:344–350

    Article  Google Scholar 

  51. Ghosh T, Satpati B, Senapati D (2014) Characterization of bimetallic core–shell nanorings synthesized via ascorbic acid-controlled galvanic displacement followed by epitaxial growth. J Mater Chem C 2:2439–2447

    Article  Google Scholar 

  52. Baruah B, Kiambuthi M (2014) Facile synthesis of silver and bimetallic silver–gold nanoparticles and their applications in surface-enhanced Raman scattering. RSC Adv 4:64860–64870

    Article  Google Scholar 

  53. Molina B, Soto JR, Calles A (2008) DFT normal modes of vibration of the Au20 cluster. Rev Mex Fis 54(4):314–318

    Google Scholar 

  54. Ng MY, Chang YC (2011) Laser-induced breathing modes in metallic nanoparticles: a symmetric molecular dynamics study. J Chem Phys 134(9):094116

    Article  Google Scholar 

  55. Ghavanloo E, Fazelzadeh SA, Rafii-Tabar H (2015) Analysis of radial breathing-mode of nanostructures with various morphologies: a critical review. Int Mater Rev 60(6):312–329

    Article  Google Scholar 

  56. Ahmad Fazelzadeh S, Ghavanloo E (2013) Radial vibration characteristics of spherical nanoparticles immersed in fluid medium. Mod Phys Lett B 27(1350186)

  57. Nelet A, Crut A, Arbouet A, Del Fatti N, Vallée F, Portales H, Saviot L, Duval E (2004) Acoustic vibrations of metal nanoparticles: high order radial mode detection. Appl Surf Sci 226:209–215

    Article  Google Scholar 

  58. Voisin C, Del Fatti N, Christofilos D, Vallée F (2000) Time-resolved investigation of the vibrational dynamics of metal nanoparticles. Appl Surf Sci 164(1):131–139

    Article  Google Scholar 

  59. Kirakosyan AS, Shahbazyan TV (2008) Vibrational modes of metal nanoshells and bimetallic core-shell nanoparticles. J Chem Phys 129(3):034708-1–0347087-7

    Article  Google Scholar 

  60. Cortez-Valadez M, Bocarando-Chacon J-G, Hernández-Martínez AR, Britto Hurtado R, Alvarez RAB, Roman-Zamorano JF, Flores-Valenzuela J, Gámez-Corrales R, Arizpe-Chávez H, Flores-Acosta M (2014) Optical properties and radial breathing modes present in Cu amorphous quantum dots obtained by green synthesis. Nanosci Nanotechnol Lett 6:580–583

    Article  Google Scholar 

  61. Britto-Hurtado R, Cortez-Valadez M, Alvarez RAB, Horta-Fraijo P, Bocarando-Chacon J-G, Gámez-Corrales R, Pérez-Rodríguez A, Martínez-Suárez F, Rodríguez-Melgarejo F, Arizpe-Chavez H, Flores-Acosta M (2015) Green synthesis and radial breathing modes in Ti nanoparticles. Nano 10:1550069-1–1550069-7

    Article  Google Scholar 

  62. Bocarando-Chacon J-G, Cortez-Valadez M, Vargas-Vazquez D, Rodríguez Melgarejo F, Flores-Acosta M, Mani-Gonzalez PG, Leon-Sarabia E, Navarro-Badilla A, Ramírez-Bon R (2014) Raman bands in Ag nanoparticles obtained in extract of Opuntia ficus-indica plant. Physica E: Low-dimensional Systems and Nanostructures 59:15–18

    Article  Google Scholar 

  63. Alvarez RAB, Cortez-Valadez M, Oscar Neira Bueno L, Britto Hurtado R, Rocha-Rocha O, Delgado-Beleño Y, Martinez-Nuñez CE, Serrano-Corrales LI, Arizpe-Chávez H, Flores-Acosta M (2016) Vibrational properties of gold nanoparticles obtained by green synthesis. Physica E: Low-dimensional Systems and Nanostructures 84:191–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cortez-Valadez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britto Hurtado, R., Cortez-Valadez, M., Arizpe-Chávez, H. et al. Random alloy of Au-Ag bimetallic nanoparticles at room temperature—facile synthesis and vibrational properties. Gold Bull 50, 85–92 (2017). https://doi.org/10.1007/s13404-017-0199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-017-0199-7

Keywords

Navigation