Skip to main content
Log in

Synthesis of gold particles at ionic liquid–ethylene glycol interfaces

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

The paper presents an investigation of the synthesis of gold particles on liquid–liquid interfaces using room temperature ionic liquids (RTIL) and ethylene glycol at temperatures up to 180 °C. The results show that depending on the RTIL used, the resulting gold particles are of different shape like trigonal and hexagonal plates, single fibers as well as bundles of fibers, and polyhedral and globular particles. This indicates that the shape of gold particles can be tailored by choosing appropriate RTIL. An increase of processing temperature mainly results in the growth of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rao C, Cheetham A (2001) Science and technology of nanomaterials: current status and future prospects. J Mater Chem 11(12):2887–2894

    Article  CAS  Google Scholar 

  2. Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D (2004) Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew Chem Int Ed 43(4):458–462

    Article  CAS  Google Scholar 

  3. Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7(1):21–41

    Article  CAS  Google Scholar 

  4. Lin Y, Skaff H, Emrick T, Dinsmore A, Russell TP (2003) Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299(5604):226–229

    Article  CAS  Google Scholar 

  5. Duan H, Wang D, Kurth DG, Möhwald H (2004) Directing self-assembly of nanoparticles at water/oil interfaces. Angew Chem Int Ed 43(42):5639–5642

    Article  CAS  Google Scholar 

  6. Erokhina S, Erokhin V, Nicolini C, Sbrana F, Ricci D, di Zitti E (2003) Microstructure origin of the conductivity differences in aggregated CuS films of different thickness. Langmuir 19(3):766–771

    Article  CAS  Google Scholar 

  7. Brown JJ, Porter JA, Daghlian CP, Gibson UJ (2001) Ordered arrays of amphiphilic gold nanoparticles in Langmuir monolayers. Langmuir 17(26):7966–7969

    Article  CAS  Google Scholar 

  8. Dabbousi B, Murray C, Rubner M, Bawendi M (1994) Langmuir-Blodgett manipulation of size-selected CdSe nanocrystallites. Chem Mater 6(2):216–219

    Article  CAS  Google Scholar 

  9. Wu P, Gao L, Guo J (2002) Formation of cadmium sulfide disks under Langmuir films at air/water interface. Mater Lett 57(1):115–118

    Article  CAS  Google Scholar 

  10. Guo Q, Teng X, Rahman S, Yang H (2003) Patterned Langmuir− Blodgett films of monodisperse nanoparticles of Iron oxide using soft lithography. J Am Chem Soc 125(3):630–631

    Article  CAS  Google Scholar 

  11. Hu J-W, Han G-B, Ren B, Sun S-G, Tian Z-Q (2004) Theoretical consideration on preparing silver particle films by adsorbing nanoparticles from bulk colloids to an air− water Interface. Langmuir 20(20):8831–8838

    Article  CAS  Google Scholar 

  12. Li YJ, Huang WJ, Sun SG (2006) A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water Interface. Angew Chem Int Ed 45(16):2537–2539

    Article  CAS  Google Scholar 

  13. Binder WH (2005) Supramolecular assembly of nanoparticles at liquid–liquid interfaces. Angew Chem Int Ed 44(33):5172–5175

    Article  CAS  Google Scholar 

  14. Wang J, Wang D, Sobal NS, Giersig M, Jiang M, Möhwald H (2006) Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew Chem Int Ed 45(47):7963–7966

    Article  CAS  Google Scholar 

  15. Ge JP, Chen W, Liu LP, Li YD (2006) Formation of disperse nanoparticles at the oil/water interface in normal microemulsions. Chem Eur J 12(25):6552–6558

    Article  CAS  Google Scholar 

  16. Gu Z-Z, Wang D, Möhwald H (2006) Self-assembly of microspheres at the air/water/air interface into free-standing colloidal crystal films. Soft Matter 3(1):68–70

    Article  Google Scholar 

  17. Feng X, Ma H, Huang S, Pan W, Zhang X, Tian F, Gao C, Cheng Y, Luo J (2006) Aqueous− organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold Nanofilms at the oil/water Interface and on solid supports. J Phys Chem B 110(25):12311–12317

    Article  CAS  Google Scholar 

  18. Saravanan P, Alam S, Mathur G (2005) A liquid− liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films 491(1):168–172

    Article  CAS  Google Scholar 

  19. Song J-M, Zhu J-H, Yu S-H (2006) Crystallization and shape evolution of single crystalline selenium Nanorods at liquid− liquid Interface: from monodisperse amorphous se Nanospheres toward se Nanorods. J Phys Chem B 110(47):23790–23795

    Article  CAS  Google Scholar 

  20. Kawasaki H, Uota M, Yoshimura T, Fujikawa D, Sakai G, Annaka M, Kijima T (2005) Single-crystalline platinum nanosheets from nonionic surfactant 2-D self-assemblies at solid/aqueous solution interfaces. Langmuir 21(24):11468–11473

    Article  CAS  Google Scholar 

  21. Kalyanikutty K, Gautam UK, Rao C (2006) Ultra-thin crystalline films of ZnS and PbS formed at the organic–aqueous interface. Solid State Sci 8(3):296–302

    Article  CAS  Google Scholar 

  22. Agrawal VV, Mahalakshmi P, Kulkarni G, Rao C (2006) Nanocrystalline films of au− ag, au− cu, and au− ag− cu alloys formed at the organic− aqueous Interface. Langmuir 22(4):1846–1851

    Article  CAS  Google Scholar 

  23. Pieranski P (1980) Two-dimensional interfacial colloidal crystals. Phys Rev Lett 45(7):569–572

    Article  CAS  Google Scholar 

  24. Rao C, Kulkarni G, Agrawal VV, Gautam UK, Ghosh M, Tumkurkar U (2005) Use of the liquid–liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides. J Colloid Interface Sci 289(2):305–318

    Article  CAS  Google Scholar 

  25. Gautam UK, Ghosh M, Rao C (2004) Template-free chemical route to ultrathin single-crystalline films of CuS and CuO employing the liquid− liquid Interface. Langmuir 20(25):10775–10778

    Article  CAS  Google Scholar 

  26. Rao C, Kulkarni G, Thomas PJ, Agrawal VV, Saravanan P (2003) Films of metal nanocrystals formed at aqueous− organic interfaces. J Phys Chem B 107(30):7391–7395

    Article  CAS  Google Scholar 

  27. Gautam UK, Ghosh M, Rao C (2003) A strategy for the synthesis of nanocrystal films of metal chalcogenides and oxides by employing the liquid–liquid interface. Chem Phys Lett 381(1):1–6

    Article  CAS  Google Scholar 

  28. Agrawal VV, Kulkarni G, Rao C (2005) Nature and properties of ultrathin Nanocrystalline gold films formed at the organic− aqueous Interface. J Phys Chem B 109(15):7300–7305

    Article  CAS  Google Scholar 

  29. Rao C, Kalyanikutty K (2008) The liquid–liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc Chem Res 41(4):489–499

    Article  CAS  Google Scholar 

  30. Lin Y, Böker A, Skaff H, Cookson D, Dinsmore A, Emrick T, Russell TP (2005) Nanoparticle assembly at fluid interfaces: structure and dynamics. Langmuir 21(1):191–194

    Article  CAS  Google Scholar 

  31. Victor M, Serdio V, Muraki T, Takeshita S, Daniel E, Hurtado S, Kano S, Teranishi T, Majima Y (2015) Gap separation-controlled nanogap electrodes by molecular ruler electroless gold plating. RSC Adv 5:7

    Google Scholar 

  32. Luo C, Zhang Y, Zeng X, Zeng T, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288:4

    Article  Google Scholar 

  33. Guo Z, Zhang Y, DuanMu Y, Xu L, Xie S, Gu N (2006) Facile Snthesis of micrometer-sized gold Nanoplates through an aniline-assited route in ethylene glycol solution. Colloids Surf A Physiochem Eng Asp 278:5

    Article  Google Scholar 

  34. Voigtländer B, Zinner A (1993) Influence of surfactants on the growth-kinetics of Si on Si(111). Surf Sci Lett 292:5

    Article  Google Scholar 

  35. Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786

    Article  CAS  Google Scholar 

  36. Fievet F, Lagier JP, Blin B, Beaudoin B, Figlarz M (1989) Homogeneous and heterogeneous nucleation in the polyol process for the preparation of Micron and submicron size metal particles. Solid State Ionics 32-33:7

    Article  Google Scholar 

  37. Richter K, Campbell PS, Baecker T, Schimitzek A, Yaprak D, Mudring A-V (2013) Ionic liquids for the synthesis of metal nanoparticles. Phys Status Solidi B 250(6):12

    Article  Google Scholar 

  38. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126(10):2

    Article  Google Scholar 

  39. Tshikhudo TR, Wang Z, Brust M (2004) Biocompatible gold nanoparticles. J Mater Sci Technol 20(8):4

    Article  Google Scholar 

  40. Stephen A, Hashmi K, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed Engl 45:40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Majewski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Majewski, P. Synthesis of gold particles at ionic liquid–ethylene glycol interfaces. Gold Bull 51, 185–195 (2018). https://doi.org/10.1007/s13404-018-0244-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-018-0244-1

Keywords

Navigation