Skip to main content
Log in

Review on gold nanoparticles and their applications

  • Mini Review
  • Published:
Toxicology and Environmental Health Sciences Aims and scope Submit manuscript

Abstract

Gold nanoparticles are widely used in many fields as preferred materials for their unique optical and physical properties, such as surface plasmon oscillations for labeling, imaging, and sensing. Recently, many advancements were made in biomedical applications with better biocompatibility in disease diagnosis and therapeutics. Au-NPs could be prepared and conjugated with many functionalizing agents, such as polymers, surfactants, ligands, dendrimers, drugs, DNA, RNA, proteins, peptides and oligonucleotides. This review addressed the use of gold nanoparticles and the surface functionalization with a wide range of molecules, expanding and improving gold nanoparticles in targeting drugs for photothermal therapy with reduced cytotoxic effcts in various cancers, gene therapy and many other diseases. Overall, Au-NPs would be a promising vehicle for drug delivery and therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, W., Gao, T., Hong, H. & Sun, J. Application of Au nanoparticles in cancer nanotechnology. Nanotech. Sci. Appl. 1, 17–32 (2008).

    CAS  Google Scholar 

  2. Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 4, MR17–MR72 (2007).

    Article  Google Scholar 

  3. Kawasaki, E. S. & Player, A. Nanotechnology, nanomedicine and the development of new, effective therapies for cancer. Nanomedicine 1, 101–109 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Horton, M. A. & Khan, A. Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine 2, 42–48 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Thayer, A. M. Building up nanotech research. Chem. Eng. News 85, 15–21 (2007).

    Google Scholar 

  6. Sharma, V., Park, K. & Srinivasarao, M. Colloidal dispersion of Au nanorods: Historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mater. Sci. Eng. R 65, 1–38 (2009).

    Article  CAS  Google Scholar 

  7. Faraday, M. Michael Faraday’s recognition of ruby Au: the birth of modern nanotechnology. Au Bulletin 40, 267–269 (2007).

    Google Scholar 

  8. Faraday, M. The Bakerian Lecture: Experimental Relations of Au (and Other Metals) to Light. Phil. Trans. R. Soc. Lond. 147, 145–181 (1857).

    Article  Google Scholar 

  9. Zsigmondy, R. & Norton, J. F. The Chemistry of Colloids (John Wiley & Sons, Inc., New York, 1917).

    Google Scholar 

  10. Zsigmondy, R. & Alexander, J. Colloids and the Ultramicroscope: A manual of colloid chemistry and ultramicroscope, 1st Edn (John Wiley & Sons, Inc., New York, 1909).

    Google Scholar 

  11. Svedberg, T. The Formation of Colloids (J. & A. Churchill, London, 1921).

    Google Scholar 

  12. Svedberg, T. & Tiselius, A. Colloid Chemistry, 2nd Edn (The Chemical Catalog Company Inc., New York, 1928).

    Google Scholar 

  13. Svedberg, T. & Pedersen, K. O. The Ultracentrifuge (Johnson Reprint Corp., 1959).

  14. Mie, G., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen Der. Physik 330, 377–445 (1908).

    Article  Google Scholar 

  15. Stewart, M. E. et al. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  PubMed  CAS  Google Scholar 

  16. Baptista, P. et al. Au nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem. 391, 943–950 (2008).

    Article  PubMed  CAS  Google Scholar 

  17. Gupta, S., Huda, S., Kilpatrick, P. K. & Velev, O. D. Characterization and optimization of Au nanoparticle-based silver-enhanced immunoassays. Anal. Chem. 79, 3810–3820 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Liu, X. et al. A one-step homogeneous immunoassay for cancer biomarker detection using Au nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130, 2780–2782 (2008).

    Article  PubMed  CAS  Google Scholar 

  19. Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using Au nanoparticles. Laser Med. Sci. 23, 217–228 (2008).

    Article  Google Scholar 

  20. Lal, S., Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res. 41, 1842–1851 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. Luo, P. G. & Stutzenberger, F. J. Nanotechnology in the detection and control of microorganisms. Adv. Appl. Microbiol. 63, 145–181 (2008).

    Article  PubMed  CAS  Google Scholar 

  22. Han, G., Ghosh, P. & Rotello, V. M. Functionalized Au nanoparticles for drug delivery. Nanomedicine 2, 113–123 (2007).

    Article  PubMed  CAS  Google Scholar 

  23. Aaron, J. et al. Polarization microscopy with stellated Au nanoparticles for robust monitoring of molecular assemblies and single biomolecules. Opt. Express. 16, 2153–2167 (2008).

    Article  PubMed  CAS  Google Scholar 

  24. Zharov, V., Galanzha, E., Shashkov, E., Khlebtsov, N. & Tuchin, V. In vivo photo acoustic flow cytometry for monitoring circulating single cancer cells and contrast agents. Opt. Lett. 31, 3623–3625 (2006).

    Article  PubMed  Google Scholar 

  25. Pissuwan, D., Niidome, T. & Cortie, M. B. The forthcoming application of Au nanoparticles in drug and gene delivery systems. J. Control. Release 149, 65–71 (2011).

    Article  PubMed  CAS  Google Scholar 

  26. Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Therapeutic possibilities of plasmonically heated Au nanoparticles. Trends Biotechnol. 24, 62–67 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. Hu, M. et al. Au nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 38, 1084–1094 (2006).

    Article  CAS  Google Scholar 

  28. Daniel, M. C. & Astruc, D. Au nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 35, 293–346 (2004).

    Article  CAS  Google Scholar 

  29. Pissuwan, D., Valenzuela, S. M. & Cortie, M. B. Prospects for Au nanorod particles in diagnostic and therapeutic applications. Biotechnol. Gen. Eng. Rev. 25, 93–112 (2008).

    Article  CAS  Google Scholar 

  30. Tong, L., Wei, Q., Wei, A. & Cheng, J.-X. Au nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 85, 21–32 (2009).

    Article  PubMed  CAS  Google Scholar 

  31. Ghosh, P., Han, G., De, M., Kim, C. K. & Rotello, V. M. Au nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315 (2008).

    Article  PubMed  CAS  Google Scholar 

  32. Chen, P. C., Mwakwari, S. C. & Oyelere, A. K. Au nanoparticles: from nanomedicine to nanosensing. Nanotech. Sci. Appl. 1, 45–66 (2008).

    CAS  Google Scholar 

  33. Skirtach, A. G. et al. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. 45, 4728–4733 (2006).

    Article  Google Scholar 

  34. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymernanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. Gupta, P., Vermani, K. & Garg, S. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Today 7, 569–579 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. Sun, Y. & Xia, Y. Shape-controlled synthesis of Au and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  PubMed  CAS  Google Scholar 

  37. Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: a hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    Article  PubMed  CAS  Google Scholar 

  38. Nehl, C. L., Liao, H. & Hafner, J. H. Optical properties of star-shaped Au nanoparticles. Nano Lett. 6, 683–688 (2006).

    Article  PubMed  CAS  Google Scholar 

  39. Sun, Y. & Xia, Y. Alloying and dealloying processes involved in the preparation of metal nanoshells through a galvanic replacement reaction. Nano Lett. 3, 1569–1572 (2003).

    Article  CAS  Google Scholar 

  40. Glomm, W. R. Functionalized Au nanoparticles for applications in bionanotechnology. J. Disp. Sci. Technol. 26, 389–414 (2005).

    Article  CAS  Google Scholar 

  41. Zhou, J., Ralston, J., Sedev, R. & Beattie, D. A. Functionalized Au nanoparticles: synthesis, structure and colloid stability. J. Colloid Interface Sci. 331, 251–262 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. Mitamura, K. & Imae, T. Functionalization of Au nanorods toward their applications. Plasmonics 4, 23–30 (2009).

    Article  CAS  Google Scholar 

  43. Edwards, p. p. & Thomas, J. M. Au in a metallic devided state-from faraday to present-day nanoscience. Angrew. Chem. Int. Ed. Engl. 46, 5480–5486 (2007).

    Article  CAS  Google Scholar 

  44. Hunt, L. B. The true story of the purple of cassius: The birth of Au-based glass and enamel colours. Au Bull. 9, 134–139 (1976).

    Google Scholar 

  45. Encyclopedia, http://www.encyclopedia.com/topic/Richard_Zsigmondy.aspx (2008).

  46. Svedberg, T. & Fåhraeus, R. A new direct method for the determination of the molecular weight of the proteins. J. Am. Chem. Soc. 48, 430–438 (1926).

    Article  Google Scholar 

  47. Gray, G. W. The Ultracentrifuge. Scientific American 184, 42–51 (1951).

    Article  Google Scholar 

  48. Stokes, G. G. On the effect of the internal friction of fluids on the motion of pendulums. Trans. Cambridge Phil. Soc. 9, 8 (1856).

    Google Scholar 

  49. Adair, G. S. A critical study of the direct method of measuring the osmotic pressure of haemoglobin. Proc. R. Soc. Lond. B 98, 523 (1925).

    Article  Google Scholar 

  50. Adair, G. S. The osmotic pressure of hemoglobin in the presence of salt. Proc. R. Soc. Lond. A 109A, 292–300 (1925).

    Google Scholar 

  51. Ostwald, W. An Introduction to Theoretical and Applied Colloid Chemistry, “the world of neglected dimensions (John Wiley & Sons, Inc., New York, 1917).

    Google Scholar 

  52. Stern, K. H. The liesegang phenomenon. Chem. Rev. 54, 79–99 (1954).

    Article  CAS  Google Scholar 

  53. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse Au suspensions. Nature 241, 20–22 (1973).

    CAS  Google Scholar 

  54. Turkevich, J., Stevenson, P. C. & Hillier, J. The nucleation and growth processes in the synthesis of colloidal Au. Discuss Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

  55. Giersig, M. & Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 9, 3408–3413 (1993).

    Article  CAS  Google Scholar 

  56. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized Au nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801–802 (1994).

    Article  Google Scholar 

  57. Leff, D. V., Brandt, L. & Heath, J. R. Synthesis and characterization of hydrophobic, organically soluble Au nanocrystals functionalized with primary amines. Langmuir 12, 4723–4730 (1996).

    Article  CAS  Google Scholar 

  58. Weare, W. W., Reed, S. M., Warner, M. G. & Hutchison, J. E. Improved synthesis of small (dCORE ∼1.5 nm) phosphine-stabilized Au nanoparticles. J. Am. Chem. Soc. 122, 12890–12891 (2000).

    Article  CAS  Google Scholar 

  59. Hiramatsu, H. & Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse Au and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 16, 2509–2511 (2004).

    Article  CAS  Google Scholar 

  60. Esumi, K., Suzuki, A., Aihara, N., Usui, K. & Torigoe, K. Preparation of Au colloids with UV irradiation using dendrimers as stabilizer. Langmuir 14, 3157–3159 (1998).

    Article  CAS  Google Scholar 

  61. Garcia, M. E., Baker, L. A. & Crooks, R. M. Preparation and characterization of dendrimer-Au colloid nanocomposites. Anal. Chem. 71, 256–258 (1999).

    Article  PubMed  CAS  Google Scholar 

  62. Kim, Y. G., Oh, S. K. & Crooks, R. M. Preparation and characterization of 1–2 nm dendrimer-encapsulated Au nanoparticles having very narrow size distributions. Chem. Mater. 16, 167–172 (2004).

    Article  CAS  Google Scholar 

  63. Manna, A., Imae, T., Aoi, K., Okada, M. & Yogo, T. Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and Au particles. Chem. Mater. 13, 1674–1681 (2001).

    Article  CAS  Google Scholar 

  64. Scott, R. W. J., Wilson, O. M. & Crooks, R. M. Synthesis, characterization, and applications of dendrimerencapsulated nanoparticles. J. Phys. Chem. B 109, 692–704 (2005).

    Article  PubMed  CAS  Google Scholar 

  65. Shi, X., Ganser, T. R., Sun, K., Balogh, L. P. & Baker, Jr. J. R. Characterization of crystalline dendrimerstabilized Au nanoparticles. Nanotechnology 17, 1072–1078 (2006).

    Article  CAS  Google Scholar 

  66. Anshup, A. et al. Growth of Au nanoparticles in human cells. Langmuir 21, 11562–11567 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 266, 1961–1966 (1994).

    Article  PubMed  CAS  Google Scholar 

  68. van der Zande, B. M. I., Boehmer, M. R., Fokkink, L. G. J. & Schonenberger, C. Aqueous gold sols and rod-shaped particles. J. Phys. Chem. B 101, 852–854 (1997).

    Article  Google Scholar 

  69. Reetz, M. T. & Helbig, W. Size-selective synthesis of nanostructured transition metal clusters. J. Am. Chem. Soc. 116, 7401–7402 (1994).

    Article  CAS  Google Scholar 

  70. Yu, Y.-Y., Chang, S.-S., Lee, C.-L. & Chris Wang, C. R. Gold nanorods: electrochemical synthesis and optical properties. J. Phys. Chem. B 101, 6661–6664 (1997).

    Article  CAS  Google Scholar 

  71. Chang, S.-S., Shih, C.-W., Chen, C.-D., Lai, W.-C. & Chris Wang, C. R. The shape transition of gold nanorods. Langmuir 15, 701–709 (1999).

    Article  CAS  Google Scholar 

  72. Jana, N. R., Gearheart, L. & Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001).

    Article  CAS  Google Scholar 

  73. Busbee, B. D., Obare, S.O. & Murphy, C. J. An improved synthesis of high aspect-ratio gold nanorods. Adv. Mater. 15, 414–416 (2003).

    Article  CAS  Google Scholar 

  74. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  CAS  Google Scholar 

  75. Jana, N. R., Gearheart, L., Obare, S. O. & Murphy, C. J. Anisotropic chemical reactivity of gold spheroids and nanorods. Langmuir 18, 922–927 (2002).

    Article  CAS  Google Scholar 

  76. Canizal, G., Ascencio, J. A., Torresday, G. & Yacaman, M. J. Multiple twinned gold nanorods grown by bio-reduction techniques. J. Nanopart. Res. 3, 475–481 (2001).

    Article  CAS  Google Scholar 

  77. Mieszawska, A. J. & Zamborini, F. P. Gold nanorods grown directly on surfaces from microscale patterns of gold seeds. Chem. Mater. 17, 3415–3420 (2005).

    Article  CAS  Google Scholar 

  78. Kim, F., Song, J. H. & Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 124, 14316–14317 (2002).

    Article  PubMed  CAS  Google Scholar 

  79. Loo, C. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

    PubMed  CAS  Google Scholar 

  80. Brinson, B. E. et al. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 24, 14166–14171 (2008).

    Article  PubMed  CAS  Google Scholar 

  81. Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    Article  PubMed  CAS  Google Scholar 

  82. Oldenburg, S. J., Jackson, J. B., Westcott, S. L. & Halas, N. J. Infrared extinction properties of gold nanoshells. Appl. Phys. Lett. 75, 2897–2899 (1999).

    Article  CAS  Google Scholar 

  83. Oldenburg, S. J., Averitt, R. D., Westcott, S. L. & Halas, N. J. Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998).

    Article  CAS  Google Scholar 

  84. Oldenburg, S. J., Westcott, S. L., Averitt, R. D. & Halas, N. J. Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates. J. Chem. Phys. 111, 4729–4735 (1999).

    Article  CAS  Google Scholar 

  85. Radloff, C., Vaia, R. A., Brunton, J., Bouwer, G. T. & Ward, V. K. Metal nanoshell assembly on a virus bioscaffold. Nano. Letter 5, 1187–1191 (2005).

    Article  CAS  Google Scholar 

  86. Chen, J. et al. Facile synthesis of Au-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 128, 14776–14777 (2006).

    Article  PubMed  CAS  Google Scholar 

  87. Chen, J. et al. Au nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Letters 5, 473–477 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. Sha, M. Y., Xu, H. & Penn, S. G. SERS nanoparticles: a new optical detection modality for cancer diagnosis. Nanomed 2, 725–734 (2007).

    Article  CAS  Google Scholar 

  89. Hering, K. et al. SERS: a versatile tool in chemical and biochemical diagnostics. Anal. Bioanal. Chem. 390, 113–124 (2008).

    Article  PubMed  CAS  Google Scholar 

  90. Cao, Y. C., Jin, R. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    Article  PubMed  CAS  Google Scholar 

  91. Qian, X. et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008).

    Article  PubMed  CAS  Google Scholar 

  92. Keren, S. et al. Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 5844–5849 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Mocellin, S. & Nitti, D. TNF and cancer: the two sides of the coin. Front Biosci. 13, 2774–2783 (2008).

    Article  PubMed  CAS  Google Scholar 

  94. Visaria, R. K. et al. Enhancement of tumor thermal therapy using Au nanoparticle-assisted tumor necrosis factor alpha delivery. Mol. Cancer Ther. 5, 1014–1020 (2006).

    Article  PubMed  CAS  Google Scholar 

  95. Paciotti, G. F. et al. Colloidal Au: a novel nanoparticle vector for tumor directed drug delivery. Drug Delivery 11, 169–183 (2004).

    Article  PubMed  CAS  Google Scholar 

  96. Goel, R., Swanlund, D., Coad, J., Paciotti, G. F. & Bischof, J. C. TNF-alpha-based accentuation in cryoinjury-dose, delivery, and response. Mol. Cancer Therapy 6, 2039–2047 (2007).

    Article  CAS  Google Scholar 

  97. Visaria, R., Bischof, J. C. & Loren, M. Nanotherapeutics for enhancing thermal therapy of cancer. Int. J. Hyperthermia 23, 501–511 (2007).

    Article  PubMed  CAS  Google Scholar 

  98. Huennekens, F. M. The methotrexate story: a paradigm for development of cancer chemotherapeutic agents. Adv. Enzyme. Regul. 34, 397–419 (1994).

    Article  PubMed  CAS  Google Scholar 

  99. Chen, Y. H. et al. Methotrexate conjugated to Au nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm. 4, 713–722 (2007).

    Article  PubMed  CAS  Google Scholar 

  100. Sershen, S. R., Westcott, S. L. & Halas, N. J. Temperature-sensitive polymer-nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    Article  PubMed  CAS  Google Scholar 

  101. Chithrani, B. D., Ghazani, A. A. & Chan, W. C. Determining the size and shape dependence of Au nanoparticle uptake into mammalian cells. Nano Letter 6, 662–668 (2006).

    Article  CAS  Google Scholar 

  102. Jain, P. K., Qian, W. & El-Sayed, M. A. Ultrafast cooling of photoexcited electrons in Au nanoparticle -thiolated DNA conjugates involves the dissociation of the Au-thiol bond. J. Am. Chem. Soc. 128, 2426–2433 (2006b).

    Article  PubMed  CAS  Google Scholar 

  103. Liu, Y., Shipton, M. K. & Ryan, J. Synthesis, stability, and cellular internalization of Au nanoparticles containing mixed peptide poly (ethylene glycol) monolayers. Anal. Chem. 79, 2221–2229 (2007a).

    Article  PubMed  CAS  Google Scholar 

  104. Saha, B. In vitro structural and functional evaluation of Au nanoparticles conjugated antibiotics. Nanoscale Res. Lett. 2, 614–622 (2007).

    Article  CAS  Google Scholar 

  105. Gu, H., Ho, P. L., Tong, L., Wang, L. & Xu, B. Pre-senting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 3, 1261–1263 (2003).

    Article  CAS  Google Scholar 

  106. Rosemary, M. J., MacLaren, I. & Pradeep, T. Investigations of the antibacterial properties of ciprofloxacin @SiO2. Langmuir 22, 10125–10129 (2006).

    Article  PubMed  CAS  Google Scholar 

  107. Burygin, G. L. et al. On the enhanced antibacteria activity of antibiotics mixed with Au nanoparticles. Nanoscale Res. Lett. 4, 794–801 (2009).

    Article  PubMed  CAS  Google Scholar 

  108. Chen, Y.-H. et al. Methotrexate conjugated to Au nanoparticles inhibits tumor growth in a syngeneic lungtumor model. Mol. Pharm. 4, 713–722 (2007).

    Article  PubMed  CAS  Google Scholar 

  109. Choi, S.-W., Kim, W.-S. & Kim, J.-H. Surface modification of functional nanoparticles for controlled drug delivery. J. Dispers. Sci. Technol. 24, 475–487 (2003).

    Article  CAS  Google Scholar 

  110. Paciotti, G. F., Kingston, D. G. I. & Tamarkin, L. Colloidal Au nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev. Res. 67, 47–54 (2006).

    Article  CAS  Google Scholar 

  111. Kommareddy, S. & Amiji, M. Poly(ethyleneglycol)-modified thiolated gelatine nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine 3, 32–42 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Shenoy, D. et al. Surface functionalization of Au nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. Int. J. Nanomedicine 1, 51–57 (2006).

    Article  PubMed  CAS  Google Scholar 

  113. Niidome, T. et al. PEG-modified Au nanorods with a stealth character for in vivo applications. J. Control. Release 114, 343–347 (2006).

    Article  PubMed  CAS  Google Scholar 

  114. Takahashi, H., Niidome, T., Kawano, T., Yamada, S. & Niidome, Y. Surface modification of Au nanorods using layer-by-layer technique for cellular uptake. J. Nanopart. Res. 10, 221–228 (2008).

    Article  CAS  Google Scholar 

  115. Gu, Y. J. et al. Nuclear penetration of surface functionalized Au nanoparticles. Toxicol. Appl. Pharmacol. 237, 196–204 (2009).

    Article  PubMed  CAS  Google Scholar 

  116. Sershen, S. R., Westcott, S. L., Halas, N. J. & West, J. L. Temperature-sensitive polymer nanoshell composites for photothermally modulated drug delivery. J. Biomed. Mater. Res. 51, 293–298 (2000).

    Article  PubMed  CAS  Google Scholar 

  117. West, J. L. & Halas, N. J. Applications of nanotechnology to biotechnology. Curr. Opin. Biotechnol. 11, 215–217 (2000).

    Article  PubMed  CAS  Google Scholar 

  118. Radt, B., Smith, T. A. & Caruso, F. Optically addressable nanostructured capsules. Adv. Mat. 16, 2184–2189 (2004).

    Article  CAS  Google Scholar 

  119. Loo, C. Nanoshellenabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

    PubMed  CAS  Google Scholar 

  120. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

    Article  PubMed  CAS  Google Scholar 

  121. Yamashita, S., Niidome, Y., Katayama, Y. & Niidome, T. Photochemical reaction of poly (ethylene glycol) on Au nanorods induced by near infrared pulsed -laser irradiation. Chem. Lett. 38, 226–227 (2009).

    Article  CAS  Google Scholar 

  122. Shiotani, A., Mori, T., Niidome, T., Niidome, Y. & Katayama, Y. Stable incorporation of Au nanorods into N-isopropylacrylamidehydrogels and their rapid shrinkage induced by near-infrared laser irradiation. Langmuir 23, 4012–4018 (2007).

    Article  PubMed  CAS  Google Scholar 

  123. Takahito, K., Yasuro, N., Takeshi, M., Yoshiki, K. & Takuro, N. PNIPAM gel-coated Aunanorods for targeted delivery responding to a near-infrared laser. Bioconj. Chem. 20, 209–212 (2009).

    Article  CAS  Google Scholar 

  124. Patra, C. R., Bhattacharya, R., Mukhopadhyay, D. & Mukherjee, P. Fabrication of Au nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 62, 346–361 (2010).

    Article  PubMed  CAS  Google Scholar 

  125. Abbruzzese, J. L. et al. Phase II study of anti-epidermal growth factor receptor (egfr) antibody cetuximab (imc-c225) in combination with gemcitabine in patients with advanced pancreatic cancer. Proc. Am. Soc. Clin. Oncol. 20, 518 (2001).

    Google Scholar 

  126. Bruns, C. J. et al. Epidermal growth factor receptor blockade with c225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin. Cancer Res. 6, 1936–1948 (2000).

    PubMed  CAS  Google Scholar 

  127. Sultana, A. et al. Gemcitabine based combination chemotherapy in advanced pancreatic cancer-indirect comparison. BMC Cancer 8, 192 (2008).

    Article  PubMed  CAS  Google Scholar 

  128. Patra, C. R. Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res. 68, 1970–1978 (2008).

    Article  PubMed  CAS  Google Scholar 

  129. Mendelsohn, J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res. 3, 2703–2707 (1997).

    PubMed  CAS  Google Scholar 

  130. Mendelsohn, J. The epidermal growth factor receptor as a target for cancer therapy. Endocr. Relat. Cancer 8, 3–9 (2001).

    Article  PubMed  CAS  Google Scholar 

  131. Friess, H. et al. Growth factor receptors are differentially expressed in cancers of the papilla of vater and pancreas. Ann. Surg. 230, 767–774 (1999).

    Article  PubMed  CAS  Google Scholar 

  132. Rocha-Lima, C. M., Soares, H. P., Raez, L. E. & Singal, R. Egfr targeting of solid tumors. Cancer Control 14, 295–304 (2007).

    PubMed  Google Scholar 

  133. Sato, J. D. et al. Biological effects in vitro of monoclonal antibodies to human epidermal growth factor receptors. Mol. Biol. Med. 1, 511–529 (1983).

    PubMed  CAS  Google Scholar 

  134. Kleespies, A., Jauch, K. W. & Bruns, C. J. Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer? Drug Resist. Updat. 9, 1–18 (2006).

    Article  PubMed  CAS  Google Scholar 

  135. Pecorelli, S., Pasinetti, B., Tisi, G. & Odicino, F. Optimizing gemcitabine regimens in ovarian cancer. Semin. Oncol. 33, S17–S25 (2006).

    Article  PubMed  CAS  Google Scholar 

  136. Jacobs, A. D. Gemcitabine-based therapy in pancreas cancer: gemcitabine-docetaxel and other novel combinations. Cancer 95, 923–927 (2002).

    Article  PubMed  CAS  Google Scholar 

  137. Mackey, J. R. Gemcitabine transport in Xenopus oocytes expressing recombinant plasma membrane mammalian nucleoside transporters. J. Natl. Cancer Inst. 91, 1876–1881 (1999).

    Article  PubMed  CAS  Google Scholar 

  138. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    Article  PubMed  CAS  Google Scholar 

  139. Todd, R. C. & Lippard, S. J. Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009).

    Article  PubMed  CAS  Google Scholar 

  140. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005).

    Article  PubMed  CAS  Google Scholar 

  141. Salerno, M. Impact of intracellular chloride concentration on cisplatin accumulation in sensitive and resistant GLC4 cells. J. Biol. Inorg. Chem. 14, 123–132 (2009).

    Article  PubMed  CAS  Google Scholar 

  142. Brown, S. D. Au Nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin, J. Am. Chem. Soc. 132, 4678–4684 (2010).

    Article  PubMed  CAS  Google Scholar 

  143. Kratz, F., Müller, I. A., Ryppa, C. & Warnecke, A. Prodrug strategies in anticancer chemotherapy. Chem. Med. Chem. 3, 20–53 (2008).

    PubMed  CAS  Google Scholar 

  144. Farokhzad, O. C. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).

    Article  PubMed  CAS  Google Scholar 

  145. Dharap, S. S. Tumor specific targeting of an anti cancer drug delivery system by LHRH peptide. Proc. Natl. Acad. Sci. USA 102, 12962–12967 (2005).

    Article  PubMed  CAS  Google Scholar 

  146. Cheng, W. W. & Allen, T. M. Targeted delivery of anti-CD19 liposomal doxorubicin in B-cell lymphoma: a comparison of whole monoclonal antibody, Fab’ fragments and single chain Fv. J. Control. Release. 126, 50–58 (2008).

    Article  PubMed  CAS  Google Scholar 

  147. Kelemen, L. E. The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander? Int. J. Cancer 119, 243–250 (2006).

    Article  PubMed  CAS  Google Scholar 

  148. McKenzie, F., Faulds, K. & Graham, D. LNA functionalized Au nanoparticles as probes for double stranded DNA through triplex formation. Chem. Commun. (Camb) 20, 2367–2369 (2008).

    Article  CAS  Google Scholar 

  149. Eck, W. et al. PEGylated Au nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. ACS Nano 2, 2263–2272 (2008).

    Article  PubMed  CAS  Google Scholar 

  150. Connor, E. E., Mwamuka, J., Gole, A., Murphy, C. J. & Wyatt, M. D. Au nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1, 325–327 (2005).

    Article  PubMed  CAS  Google Scholar 

  151. Male, K. B., Lachance, B., Hrapovic, S., Sunahara, G. & Luong, J. H. Assessment of cytotoxicity of quantum dots and Au nanoparticles using cell-based impedance spectroscopy. Anal. Chem. 80, 5487–5493 (2008).

    Article  PubMed  CAS  Google Scholar 

  152. Pan, Y. et al. Au nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5, 2067–2076 (2009).

    Article  PubMed  CAS  Google Scholar 

  153. Gu, Y. J. et al. Nuclear penetration of surface functionalized Au nanoparticles. Toxicol. Appl. Pharmacol. 237, 196–204 (2009).

    Article  PubMed  CAS  Google Scholar 

  154. Yen, H. J., Hsu, S. H. & Tsai, C. L. Cytotoxicity and immunological response of Au and silver nanoparticles of different sizes. Small 5, 1553–1561 (2009).

    Article  PubMed  CAS  Google Scholar 

  155. Alkilany, A. M. et al. Cellular uptake and cytotoxicity of Au nanorods: molecular origin of cytotoxicity and surface effects. Small 5, 701–708 (2009).

    Article  PubMed  CAS  Google Scholar 

  156. Murphy, C. J. et al. Au nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41, 1721–1730 (2008).

    Article  PubMed  CAS  Google Scholar 

  157. Brandenberger, C. et al. Effects and uptake of Au nanoparticles deposited at the air liquid interface of a human epithelial airway model. Toxicol. Appl. Pharmacol. 242, 56–65 (2010).

    Article  PubMed  CAS  Google Scholar 

  158. Bastus, N. G. et al. Homogeneous conjugation of peptides onto Au nanoparticles enhances macrophage response. ACS Nano 3, 1335–1344 (2009).

    Article  PubMed  CAS  Google Scholar 

  159. Kunzmann, A. et al. Toxicology of engineered nanomaterials: Focus on biocompatibility,biodistribution and biodegradation. Biochimica et Biophysica Acta 1810, 361–373 (2011).

    Article  PubMed  CAS  Google Scholar 

  160. Malugin, A. & Ghandehari, H. Cellular uptake and toxicity of Au nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J. Appl. Toxicol. 30, 212–217 (2010).

    PubMed  Google Scholar 

  161. Chithrani, B. D., Stewart, J., Allen, C. & Jaffray, D. A. Intracellular uptake, transport, and processing of nanostructures in cancer cells. Nanomedicine 5, 118–127 (2009).

    Article  PubMed  CAS  Google Scholar 

  162. Chithrani, D. B., Dunne, M., Stewart, J., Allen, C. & Jaffray, D. A. Cellular uptake and transport of Au nanoparticles incorporated in a liposomal carrier. Nanomedicine 6, 161–169 (2010).

    Article  PubMed  CAS  Google Scholar 

  163. Nativo, P., Prior, I. A. & Brust, M. Uptake and intracellular fate of surface-modified Au nanoparticles. ACS Nano 2, 1639–1644 (2008).

    Article  PubMed  CAS  Google Scholar 

  164. Akiyama, Y., Mori, T., Katayama, Y. & Niidome, T. The effects of PEG grafting level and injection dose on Au nanorod biodistribution in the tumor-bearing mice. J. Control. Release. 139, 81–84 (2009).

    Article  PubMed  CAS  Google Scholar 

  165. Zhang, Q. et al. Au nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography. Nanotechnology 20, 395102 (2009).

    Article  PubMed  CAS  Google Scholar 

  166. Cho, W. S. et al. Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated Au nanoparticles. Toxicol. Appl. Pharmacol. 236, 16–24 (2009).

    Article  PubMed  CAS  Google Scholar 

  167. Semmler-Behnke, M. et al. Biodistribution of 1.4-and 18-nm Au particles in rats. Small 4, 2108–2111 (2008).

    Article  PubMed  CAS  Google Scholar 

  168. Dobrovolskaia, M. A. et al. Interaction of colloidal Au nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles. Nanomedicine 5, 106–117 (2009).

    Article  PubMed  CAS  Google Scholar 

  169. Langer, R. & Tirrell, D. A. Designing materials for biology and medicine. Nature 428, 487–492 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Soo A. An or Dong Kee Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, M., Shim, K.H., An, S.S.A. et al. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 3, 193–205 (2011). https://doi.org/10.1007/s13530-011-0109-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13530-011-0109-y

Keywords

Navigation